Vision Transformer (ViT) + 代码【详解】

2024-09-03 17:44

本文主要是介绍Vision Transformer (ViT) + 代码【详解】,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

    • 1、Vision Transformer (ViT) 介绍
    • 2、patch embedding
    • 3、代码
      • 3.1 class embedding + Positional Embedding
      • 3.2 Transformer Encoder
      • 3.3 classifier
      • 3.4 ViT总代码

1、Vision Transformer (ViT) 介绍

VIT论文的摘要如下,谷歌翻译如下:

  • 虽然 Transformer 架构已成为自然语言处理任务的事实标准,但它在计算机视觉领域的应用仍然有限。在 Vision 中,注意力要么与卷积网络结合使用,要么用于替换卷积网络的某些组件,同时保持其整体结构不变。我们表明,这种对 CNN 的依赖是不必要的,直接应用于图像块序列的纯 Transformer 可以在图像分类任务中表现良好。当对大量数据进行预训练并转移到多个中型或小型图像识别基准(mageNet、CIFAR-100、VTAB 等)时,Vision Transformer (ViT) 与最先进的卷积网络相比取得了出色的结果,同时需要更少的计算资源来训练。

在这里插入图片描述

如何把图像应用到transformer当中去?

  • 可以把图片中的每一个像素当作1个token,如下左图是224x224的像素,一共有50176个token,50176个token在计算self-attention时计算量太大,比如在计算相似度时就需要计算 5017 6 2 50176^2 501762次,所以需要对图像做进一步的处理。把224x224的图像分成14x14个patches,每个patches由16x16个像素组成,把每个patches embedding成一个token,这样图片就变成了14x14个tokens。

在这里插入图片描述

如下图中的右半部分,把图片分成9个patch,把每个patch embedding成固定长度的token,除了做相应的位置编码之外,还添加了额外可学习的class embedding,如下图右半部分的 ∗ * 号。在处理每个token和class embedding计算时,并不是如图中的concat,而是对位相加。相加之后再做Transformer Encoder的操作。
在之前的self attention中,输出的个数等于输入的个数,但是在ViT中,只需要输出class embedding的结果,再经过MLP Head(可以当作全连接层)得到图像的类别。

在这里插入图片描述

2、patch embedding

class PatchEmbed(nn.Module):"""2D Image to Patch Embedding"""def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):super().__init__()img_size = (img_size, img_size)patch_size = (patch_size, patch_size)self.img_size = img_sizeself.patch_size = patch_sizeself.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])self.num_patches = self.grid_size[0] * self.grid_size[1]self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()def forward(self, x):B, C, H, W = x.shapeassert H == self.img_size[0] and W == self.img_size[1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."# flatten: [B, C, H, W] -> [B, C, HW]# transpose: [B, C, HW] -> [B, HW, C]x = self.proj(x).flatten(2).transpose(1, 2)x = self.norm(x)return x

代码解释:

196表示一共有196个token,768表示为每个patch/token可以用长度为768的特征向量来表示,

在这里插入图片描述

为了方便理解,下面画了一个简单的示意图,

在这里插入图片描述

3、代码

3.1 class embedding + Positional Embedding

下图左边红框框起来的示意图对应的代码是下图右边红框框起来的代码,
x = self.blocks(x)代码讲解在3.2部分,

在这里插入图片描述

3.2 Transformer Encoder

self.blocks是由多个Block组合,Block具体代码如下,

在这里插入图片描述

Block具体代码,

在这里插入图片描述

多头注意力机制的代码,

在这里插入图片描述

MLP的代码,

在这里插入图片描述

3.3 classifier

在这里插入图片描述

3.4 ViT总代码

"""
original code from rwightman:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
from functools import partial
from collections import OrderedDictimport torch
import torch.nn as nndef drop_path(x, drop_prob: float = 0., training: bool = False):"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted forchanging the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use'survival rate' as the argument."""if drop_prob == 0. or not training:return xkeep_prob = 1 - drop_probshape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNetsrandom_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)random_tensor.floor_()  # binarizeoutput = x.div(keep_prob) * random_tensorreturn outputclass DropPath(nn.Module):"""Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""def __init__(self, drop_prob=None):super(DropPath, self).__init__()self.drop_prob = drop_probdef forward(self, x):return drop_path(x, self.drop_prob, self.training)class PatchEmbed(nn.Module):"""2D Image to Patch Embedding"""def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):super().__init__()img_size = (img_size, img_size)patch_size = (patch_size, patch_size)self.img_size = img_sizeself.patch_size = patch_sizeself.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])self.num_patches = self.grid_size[0] * self.grid_size[1]self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()def forward(self, x):B, C, H, W = x.shapeassert H == self.img_size[0] and W == self.img_size[1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."# flatten: [B, C, H, W] -> [B, C, HW]# transpose: [B, C, HW] -> [B, HW, C]x = self.proj(x).flatten(2).transpose(1, 2)x = self.norm(x)return xclass Attention(nn.Module):def __init__(self,dim,   # 输入token的dimnum_heads=8,qkv_bias=False,qk_scale=None,attn_drop_ratio=0.,proj_drop_ratio=0.):super(Attention, self).__init__()self.num_heads = num_headshead_dim = dim // num_headsself.scale = qk_scale or head_dim ** -0.5self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop_ratio)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop_ratio)def forward(self, x):# [batch_size, num_patches + 1, total_embed_dim]B, N, C = x.shape# qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]# reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]# permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)# [batch_size, num_heads, num_patches + 1, embed_dim_per_head]q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)# transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]# @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]attn = (q @ k.transpose(-2, -1)) * self.scaleattn = attn.softmax(dim=-1)attn = self.attn_drop(attn)# @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]# transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]# reshape: -> [batch_size, num_patches + 1, total_embed_dim]x = (attn @ v).transpose(1, 2).reshape(B, N, C)x = self.proj(x)x = self.proj_drop(x)return xclass Mlp(nn.Module):"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Linear(in_features, hidden_features)self.act = act_layer()self.fc2 = nn.Linear(hidden_features, out_features)self.drop = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return xclass Block(nn.Module):def __init__(self,dim,num_heads,mlp_ratio=4.,qkv_bias=False,qk_scale=None,drop_ratio=0.,attn_drop_ratio=0.,drop_path_ratio=0.,act_layer=nn.GELU,norm_layer=nn.LayerNorm):super(Block, self).__init__()self.norm1 = norm_layer(dim)self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)# NOTE: drop path for stochastic depth, we shall see if this is better than dropout hereself.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)def forward(self, x):x = x + self.drop_path(self.attn(self.norm1(x)))x = x + self.drop_path(self.mlp(self.norm2(x)))return xclass VisionTransformer(nn.Module):def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,act_layer=None):"""Args:img_size (int, tuple): input image sizepatch_size (int, tuple): patch sizein_c (int): number of input channelsnum_classes (int): number of classes for classification headembed_dim (int): embedding dimensiondepth (int): depth of transformernum_heads (int): number of attention headsmlp_ratio (int): ratio of mlp hidden dim to embedding dimqkv_bias (bool): enable bias for qkv if Trueqk_scale (float): override default qk scale of head_dim ** -0.5 if setrepresentation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if setdistilled (bool): model includes a distillation token and head as in DeiT modelsdrop_ratio (float): dropout rateattn_drop_ratio (float): attention dropout ratedrop_path_ratio (float): stochastic depth rateembed_layer (nn.Module): patch embedding layernorm_layer: (nn.Module): normalization layer"""super(VisionTransformer, self).__init__()self.num_classes = num_classesself.num_features = self.embed_dim = embed_dim  # num_features for consistency with other modelsself.num_tokens = 2 if distilled else 1norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)act_layer = act_layer or nn.GELUself.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)num_patches = self.patch_embed.num_patchesself.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else Noneself.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))self.pos_drop = nn.Dropout(p=drop_ratio)dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)]  # stochastic depth decay ruleself.blocks = nn.Sequential(*[Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],norm_layer=norm_layer, act_layer=act_layer)for i in range(depth)])self.norm = norm_layer(embed_dim)# Representation layerif representation_size and not distilled:self.has_logits = Trueself.num_features = representation_sizeself.pre_logits = nn.Sequential(OrderedDict([("fc", nn.Linear(embed_dim, representation_size)),("act", nn.Tanh())]))else:self.has_logits = Falseself.pre_logits = nn.Identity()# Classifier head(s)self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()self.head_dist = Noneif distilled:self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()# Weight initnn.init.trunc_normal_(self.pos_embed, std=0.02)if self.dist_token is not None:nn.init.trunc_normal_(self.dist_token, std=0.02)nn.init.trunc_normal_(self.cls_token, std=0.02)self.apply(_init_vit_weights)def forward_features(self, x):# [B, C, H, W] -> [B, num_patches, embed_dim]x = self.patch_embed(x)  # [B, 196, 768]# [1, 1, 768] -> [B, 1, 768]cls_token = self.cls_token.expand(x.shape[0], -1, -1)if self.dist_token is None:x = torch.cat((cls_token, x), dim=1)  # [B, 197, 768]else:x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)x = self.pos_drop(x + self.pos_embed)x = self.blocks(x)x = self.norm(x)if self.dist_token is None:return self.pre_logits(x[:, 0])else:return x[:, 0], x[:, 1]def forward(self, x):x = self.forward_features(x)if self.head_dist is not None:x, x_dist = self.head(x[0]), self.head_dist(x[1])if self.training and not torch.jit.is_scripting():# during inference, return the average of both classifier predictionsreturn x, x_distelse:return (x + x_dist) / 2else:x = self.head(x)return xdef _init_vit_weights(m):"""ViT weight initialization:param m: module"""if isinstance(m, nn.Linear):nn.init.trunc_normal_(m.weight, std=.01)if m.bias is not None:nn.init.zeros_(m.bias)elif isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode="fan_out")if m.bias is not None:nn.init.zeros_(m.bias)elif isinstance(m, nn.LayerNorm):nn.init.zeros_(m.bias)nn.init.ones_(m.weight)def vit_base_patch16_224(num_classes: int = 1000):"""ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA  密码: eu9f"""model = VisionTransformer(img_size=224,patch_size=16,embed_dim=768,depth=12,num_heads=12,representation_size=None,num_classes=num_classes)return modeldef vit_base_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth"""model = VisionTransformer(img_size=224,patch_size=16,embed_dim=768,depth=12,num_heads=12,representation_size=768 if has_logits else None,num_classes=num_classes)return modeldef vit_base_patch32_224(num_classes: int = 1000):"""ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg  密码: s5hl"""model = VisionTransformer(img_size=224,patch_size=32,embed_dim=768,depth=12,num_heads=12,representation_size=None,num_classes=num_classes)return modeldef vit_base_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth"""model = VisionTransformer(img_size=224,patch_size=32,embed_dim=768,depth=12,num_heads=12,representation_size=768 if has_logits else None,num_classes=num_classes)return modeldef vit_large_patch16_224(num_classes: int = 1000):"""ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ  密码: qqt8"""model = VisionTransformer(img_size=224,patch_size=16,embed_dim=1024,depth=24,num_heads=16,representation_size=None,num_classes=num_classes)return modeldef vit_large_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth"""model = VisionTransformer(img_size=224,patch_size=16,embed_dim=1024,depth=24,num_heads=16,representation_size=1024 if has_logits else None,num_classes=num_classes)return modeldef vit_large_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth"""model = VisionTransformer(img_size=224,patch_size=32,embed_dim=1024,depth=24,num_heads=16,representation_size=1024 if has_logits else None,num_classes=num_classes)return modeldef vit_huge_patch14_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.NOTE: converted weights not currently available, too large for github release hosting."""model = VisionTransformer(img_size=224,patch_size=14,embed_dim=1280,depth=32,num_heads=16,representation_size=1280 if has_logits else None,num_classes=num_classes)return model

参考:
1、https://65d8gk.axshare.com/?id=hk98lb&p=%E7%BD%91%E7%BB%9C%E7%BB%93%E6%9E%84&g=1&sc=3
2、哔哩哔哩视频
3、https://enzo-miman.github.io/#/2_transformer%E4%B8%8EDETR?id=transformer
4、https://github.com/Enzo-MiMan/cv_related_collections/blob/main/transformer_DETR/vision_transformer/vit_model.py

这篇关于Vision Transformer (ViT) + 代码【详解】的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1133614

相关文章

Spring Security基于数据库验证流程详解

Spring Security 校验流程图 相关解释说明(认真看哦) AbstractAuthenticationProcessingFilter 抽象类 /*** 调用 #requiresAuthentication(HttpServletRequest, HttpServletResponse) 决定是否需要进行验证操作。* 如果需要验证,则会调用 #attemptAuthentica

OpenHarmony鸿蒙开发( Beta5.0)无感配网详解

1、简介 无感配网是指在设备联网过程中无需输入热点相关账号信息,即可快速实现设备配网,是一种兼顾高效性、可靠性和安全性的配网方式。 2、配网原理 2.1 通信原理 手机和智能设备之间的信息传递,利用特有的NAN协议实现。利用手机和智能设备之间的WiFi 感知订阅、发布能力,实现了数字管家应用和设备之间的发现。在完成设备间的认证和响应后,即可发送相关配网数据。同时还支持与常规Sof

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

6.1.数据结构-c/c++堆详解下篇(堆排序,TopK问题)

上篇:6.1.数据结构-c/c++模拟实现堆上篇(向下,上调整算法,建堆,增删数据)-CSDN博客 本章重点 1.使用堆来完成堆排序 2.使用堆解决TopK问题 目录 一.堆排序 1.1 思路 1.2 代码 1.3 简单测试 二.TopK问题 2.1 思路(求最小): 2.2 C语言代码(手写堆) 2.3 C++代码(使用优先级队列 priority_queue)

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

K8S(Kubernetes)开源的容器编排平台安装步骤详解

K8S(Kubernetes)是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。以下是K8S容器编排平台的安装步骤、使用方式及特点的概述: 安装步骤: 安装Docker:K8S需要基于Docker来运行容器化应用程序。首先要在所有节点上安装Docker引擎。 安装Kubernetes Master:在集群中选择一台主机作为Master节点,安装K8S的控制平面组件,如AP

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

D4代码AC集

贪心问题解决的步骤: (局部贪心能导致全局贪心)    1.确定贪心策略    2.验证贪心策略是否正确 排队接水 #include<bits/stdc++.h>using namespace std;int main(){int w,n,a[32000];cin>>w>>n;for(int i=1;i<=n;i++){cin>>a[i];}sort(a+1,a+n+1);int i=1