【Text2SQL 论文】T5-SR:使用 T5 生成中间表示来得到 SQL

2024-05-31 12:36

本文主要是介绍【Text2SQL 论文】T5-SR:使用 T5 生成中间表示来得到 SQL,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

论文:T5-SR: A Unified Seq-to-Seq Decoding Strategy for Semantic Parsing

⭐⭐⭐

北大 & 中科大,arXiv:2306.08368

文章目录

    • 一、论文速读
    • 二、中间表示:SSQL
    • 三、Score Re-estimator
    • 四、总结

一、论文速读

本文设计了一个 NL 和 SQL 的中间表示 SSQL,然后使用 seq2seq 模型,输入 NL 和 table schema,输出 SSQL,然后再基于 SSQL 构建出 SQL。

论文提出了使用 seq2seq 来做 Text2SQL 的两个挑战:

  1. seq2seq 能否产生模式上正确的 SQL?论文发现,seq2seq 模型能够产生合法的 SQL skeleton,但细节上的 schematic info prediction 容易出错。因此,本文引入 SSQL 作为 seq2seq 的中间表示,SSQL 目标是保留 NL 的语义信息,但去除掉 user query 没有表达的 database-schema-related 信息。
  2. seq2seq 能否产生语义一致的 SQL?论文指出,由于 seq2seq 的单向解码的机制,产生整个语义一致的 sequences 是难以保证的,QA 场景也许有较大容错性,但这在生成 SQL 上会产生灾难性失败。此外,论文发现 seq2seq 模型在使用 beam search 时是能够预测出正确的 SQL,但可能会给他们较低的 scores。为此,这里引入一个 score re-estimator 来重排所有 candidate predictions

二、中间表示:SSQL

Semantic-SQL(SSQL)的设计目标是去除掉标准 SQL 表达式中不必要的 schema-related 信息。主要基于原来的 SQL 语法做了如下改动:

  • 通过消除掉 JOIN 子句来简化 FROM 语句。SSQL 只预测出需要哪些表,但不需要指明如何 JOIN 起来,后序会使用 Steiner Tree Algorithm 来将使用的 tables JOIN 起来,从而生成 SQL。
  • 将 TABLE 和 COLUMN 结合为一个 string。标准 SQL 是 column 名和 table 名分开的,这里将输入的 schema 中将 TABLE 和 COLUMN 连接在一起,那输出中也就自然在一起了。

下面是一个 SSQL 的示例以及 JOIN 子句的预测:

在这里插入图片描述

三、Score Re-estimator

由于 seq2seq 在使用 beam search 时,可能会给 correct prediction 赋予较低的 scores,因此这里引入额外的 score re-estimator 来重新排序所有的 candidate predictions。score re-estimator 就是根据 candidate SQL 和 NL query 之间的语义一致性来计算一个得分。

score re-estimator 的实现图示如下:

在这里插入图片描述

它通过 [CLS] 得到一个分数,并将其与 seq2seq score 进行加权组合来得到最终的 score:

在这里插入图片描述

seq2seq score 是在生成 token 时,根据 seq2seq 生成 token 的概率值来计算得到的,这个 score 可以看作是生成该序列的 log-likelihood,即模型认为这个序列是正确输出的相对可能性。在 beam-search 策略中,会选择概率最高的序列作为最终生成的序列。

训练 score re-estimator 的方法,就是期待它能给正确的 NL-SQL pair 以更高的概率分,在做监督训练时,论文还采用了一个 trick:使用 soft logits 作为监督信号,原论文解释如下:

这样能更加对 beam search 中排名最高的候选者保持怀疑的态度。

四、总结

本文模型是通过引入中间表示并使用 seq2seq(T5)来解决 Text2SQL 任务,同时论文中也指出了使用 seq2seq 在 Text2SQL 任务下的难点。

该工作还引入了 SSQL 这样的中间表示,它比 SemQL、RAT-SQL IR 等中间表示要简单不少。

这篇关于【Text2SQL 论文】T5-SR:使用 T5 生成中间表示来得到 SQL的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1017946

相关文章

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

MybatisGenerator文件生成不出对应文件的问题

《MybatisGenerator文件生成不出对应文件的问题》本文介绍了使用MybatisGenerator生成文件时遇到的问题及解决方法,主要步骤包括检查目标表是否存在、是否能连接到数据库、配置生成... 目录MyBATisGenerator 文件生成不出对应文件先在项目结构里引入“targetProje

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存

C#使用HttpClient进行Post请求出现超时问题的解决及优化

《C#使用HttpClient进行Post请求出现超时问题的解决及优化》最近我的控制台程序发现有时候总是出现请求超时等问题,通常好几分钟最多只有3-4个请求,在使用apipost发现并发10个5分钟也... 目录优化结论单例HttpClient连接池耗尽和并发并发异步最终优化后优化结论我直接上优化结论吧,