《原始论文:Spectral Networks and Locally Connected Networks on Graphs》 空域卷积非常直观地借鉴了图像里的卷积操作,但缺乏一定的理论基础。 而频域卷积则不同,相比于空域卷积而言,它主要利用的是**图傅里叶变换(Graph Fourier Transform)**实现卷积。 简单来讲,它利用图的**拉普拉斯矩阵(Laplacian ma
这篇论文是daijifeng老师又一篇好文,一贯的好想法,而且实现的很漂亮,arxiv link Motivation 现实图片中的物体变化很多,之前只能通过数据增强来使网络“记住”这些变种如n object scale, pose, viewpoint, and part deformation,但是这种数据增强只能依赖一些先验知识比如反转后物体类别不变等,但是有些变化是未知而且手动设
Noise Conditional Score Networks Score S c o r e = ∇ x l o g p ( x ) (1) Score = \nabla_xlog~{p(x)} \tag{1} Score=∇xlog p(x)(1) Score 是论文中的一个定义,表示概率密度 p ( x ) p(x) p(x)的梯度,沿着概率密度的梯度向前走,会走到概率密度最高的
摘要 Many real-world data(真实世界的数据) come in the form of graphs(以图片的形式). Graph neural networks (GNNs 图神经网络), a new family of machine learning (ML) models, have been proposed to fully leverage graph data(
1. 单选题 One of the most dramatic changes in connectivity and communications in the past few years has been ____. A. widespread use of mobile devices with wireless Internet connectivity B. chat ro