Self-Attention Generative Adversarial Networks解读+部分代码

本文主要是介绍Self-Attention Generative Adversarial Networks解读+部分代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

     Self-Attention Generative Adversarial Networks解读+部分代码
 

引言

这篇是文章是Ian goodfellow他们的新工作,在GAN中引入Attention。
在文章的摘要中作者主要突出了三点。
Self-Attention Generative Adversarial Network(SAGAN)是一个注意力驱动,长范围 关联模型(attention-driven, long-range dependency modeling )。
传统的GAN在生成高分辨率的细节时,是基于低分辨率的feature map中的某一个小部分的。而SAGAN是基于所有的特征点(all feature locations).
在训练时使用了光谱归一化(spectral normalization )来提升训练强度(training dynamics)。

SAGAN的优势

  • 可以很好的处理长范围、多层次的依赖(可以很好的发现图像中的依赖关系)
  • 生成图像时每一个位置的细节和远端的细节协调好
  • 判别器还可以更准确地对全局图像结构实施复杂的几何约束

因为文章提到了long range 所以这里的远端,个人的理解是前几层卷积的output。

SAGAN

作者提到,大多数的GAN都使用了卷积,但是在处理long range依赖时,卷积的效率很低,所以他们采用了non-local model

x 被送入两个特征空间f,g去计算attention。

Bij 表示在生成第j个区域时,是否关注第i个位置。



上面是每个可学习矩阵的纬度,都是用1X1卷积实现的。



在文章的所有实验中都用到了上面这个超参。

之后再带权相加,得到融合了attention的feature map


γ的值初始化为0,这是因为在最开始,只需要依赖于局部信息,之后在慢慢增大权重加入non-local evidence.
在训练过程中还使用了光谱归一化(spectral normalization)和two-timescale update rule(TTUR)来稳定训练。

部分代码

attention 具体实现

    def attention(self, x, ch, sn=False, scope='attention', reuse=False):with tf.variable_scope(scope, reuse=reuse):f = conv(x, ch // 8, kernel=1, stride=1, sn=sn, scope='f_conv') # [bs, h, w, c']g = conv(x, ch // 8, kernel=1, stride=1, sn=sn, scope='g_conv') # [bs, h, w, c']h = conv(x, ch, kernel=1, stride=1, sn=sn, scope='h_conv') # [bs, h, w, c]# N = h * ws = tf.matmul(hw_flatten(g), hw_flatten(f), transpose_b=True) # # [bs, N, N]beta = tf.nn.softmax(s, axis=-1)  # attention mapo = tf.matmul(beta, hw_flatten(h)) # [bs, N, C]gamma = tf.get_variable("gamma", [1], initializer=tf.constant_initializer(0.0))o = tf.reshape(o, shape=x.shape) # [bs, h, w, C]x = gamma * o + xreturn x

生成器

    def generator(self, z, is_training=True, reuse=False):with tf.variable_scope("generator", reuse=reuse):ch = 1024x = deconv(z, channels=ch, kernel=4, stride=1, padding='VALID', use_bias=False, sn=self.sn, scope='deconv')x = batch_norm(x, is_training, scope='batch_norm')x = relu(x)for i in range(self.layer_num // 2):if self.up_sample:x = up_sample(x, scale_factor=2)x = conv(x, channels=ch // 2, kernel=3, stride=1, pad=1, sn=self.sn, scope='up_conv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm_' + str(i))x = relu(x)else:x = deconv(x, channels=ch // 2, kernel=4, stride=2, use_bias=False, sn=self.sn, scope='deconv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm_' + str(i))x = relu(x)ch = ch // 2# Self Attentionx = self.attention(x, ch, sn=self.sn, scope="attention", reuse=reuse)for i in range(self.layer_num // 2, self.layer_num):if self.up_sample:x = up_sample(x, scale_factor=2)x = conv(x, channels=ch // 2, kernel=3, stride=1, pad=1, sn=self.sn, scope='up_conv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm_' + str(i))x = relu(x)else:x = deconv(x, channels=ch // 2, kernel=4, stride=2, use_bias=False, sn=self.sn, scope='deconv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm_' + str(i))x = relu(x)ch = ch // 2if self.up_sample:x = up_sample(x, scale_factor=2)x = conv(x, channels=self.c_dim, kernel=3, stride=1, pad=1, sn=self.sn, scope='G_conv_logit')x = tanh(x)else:x = deconv(x, channels=self.c_dim, kernel=4, stride=2, use_bias=False, sn=self.sn, scope='G_deconv_logit')x = tanh(x)return x

判别器

    def discriminator(self, x, is_training=True, reuse=False):with tf.variable_scope("discriminator", reuse=reuse):ch = 64x = conv(x, channels=ch, kernel=4, stride=2, pad=1, sn=self.sn, use_bias=False, scope='conv')x = lrelu(x, 0.2)for i in range(self.layer_num // 2):x = conv(x, channels=ch * 2, kernel=4, stride=2, pad=1, sn=self.sn, use_bias=False, scope='conv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm' + str(i))x = lrelu(x, 0.2)ch = ch * 2# Self Attentionx = self.attention(x, ch, sn=self.sn, scope="attention", reuse=reuse)for i in range(self.layer_num // 2, self.layer_num):x = conv(x, channels=ch * 2, kernel=4, stride=2, pad=1, sn=self.sn, use_bias=False, scope='conv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm' + str(i))x = lrelu(x, 0.2)ch = ch * 2x = conv(x, channels=4, stride=1, sn=self.sn, use_bias=False, scope='D_logit')return x

更多细节请参考SAGAN


上面贴的代码是 tensorflow版的没有用spectral normalization。
这个pytorch版使用了spectral normalization。
spectral normalization的具体实现可以看这里

 

【转载】:https://www.jianshu.com/p/0540fb554088

                   https://github.com/heykeetae/Self-Attention-GAN

                   https://github.com/taki0112/Self-Attention-GAN-Tensorflow

这篇关于Self-Attention Generative Adversarial Networks解读+部分代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123753

相关文章

Mysql用户授权(GRANT)语法及示例解读

《Mysql用户授权(GRANT)语法及示例解读》:本文主要介绍Mysql用户授权(GRANT)语法及示例,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录mysql用户授权(GRANT)语法授予用户权限语法GRANT语句中的<权限类型>的使用WITH GRANT

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

一文详解如何在Python中从字符串中提取部分内容

《一文详解如何在Python中从字符串中提取部分内容》:本文主要介绍如何在Python中从字符串中提取部分内容的相关资料,包括使用正则表达式、Pyparsing库、AST(抽象语法树)、字符串操作... 目录前言解决方案方法一:使用正则表达式方法二:使用 Pyparsing方法三:使用 AST方法四:使用字

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

python3 gunicorn配置文件的用法解读

《python3gunicorn配置文件的用法解读》:本文主要介绍python3gunicorn配置文件的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录python3 gunicorn配置文件配置文件服务启动、重启、关闭启动重启关闭总结python3 gun

关于pandas的read_csv方法使用解读

《关于pandas的read_csv方法使用解读》:本文主要介绍关于pandas的read_csv方法使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录pandas的read_csv方法解读read_csv中的参数基本参数通用解析参数空值处理相关参数时间处理相关

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求

Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码

《Java中Date、LocalDate、LocalDateTime、LocalTime、时间戳之间的相互转换代码》:本文主要介绍Java中日期时间转换的多种方法,包括将Date转换为LocalD... 目录一、Date转LocalDateTime二、Date转LocalDate三、LocalDateTim

jupyter代码块没有运行图标的解决方案

《jupyter代码块没有运行图标的解决方案》:本文主要介绍jupyter代码块没有运行图标的解决方案,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录jupyter代码块没有运行图标的解决1.找到Jupyter notebook的系统配置文件2.这时候一般会搜索到

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.