Self-Attention Generative Adversarial Networks解读+部分代码

本文主要是介绍Self-Attention Generative Adversarial Networks解读+部分代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

     Self-Attention Generative Adversarial Networks解读+部分代码
 

引言

这篇是文章是Ian goodfellow他们的新工作,在GAN中引入Attention。
在文章的摘要中作者主要突出了三点。
Self-Attention Generative Adversarial Network(SAGAN)是一个注意力驱动,长范围 关联模型(attention-driven, long-range dependency modeling )。
传统的GAN在生成高分辨率的细节时,是基于低分辨率的feature map中的某一个小部分的。而SAGAN是基于所有的特征点(all feature locations).
在训练时使用了光谱归一化(spectral normalization )来提升训练强度(training dynamics)。

SAGAN的优势

  • 可以很好的处理长范围、多层次的依赖(可以很好的发现图像中的依赖关系)
  • 生成图像时每一个位置的细节和远端的细节协调好
  • 判别器还可以更准确地对全局图像结构实施复杂的几何约束

因为文章提到了long range 所以这里的远端,个人的理解是前几层卷积的output。

SAGAN

作者提到,大多数的GAN都使用了卷积,但是在处理long range依赖时,卷积的效率很低,所以他们采用了non-local model

x 被送入两个特征空间f,g去计算attention。

Bij 表示在生成第j个区域时,是否关注第i个位置。



上面是每个可学习矩阵的纬度,都是用1X1卷积实现的。



在文章的所有实验中都用到了上面这个超参。

之后再带权相加,得到融合了attention的feature map


γ的值初始化为0,这是因为在最开始,只需要依赖于局部信息,之后在慢慢增大权重加入non-local evidence.
在训练过程中还使用了光谱归一化(spectral normalization)和two-timescale update rule(TTUR)来稳定训练。

部分代码

attention 具体实现

    def attention(self, x, ch, sn=False, scope='attention', reuse=False):with tf.variable_scope(scope, reuse=reuse):f = conv(x, ch // 8, kernel=1, stride=1, sn=sn, scope='f_conv') # [bs, h, w, c']g = conv(x, ch // 8, kernel=1, stride=1, sn=sn, scope='g_conv') # [bs, h, w, c']h = conv(x, ch, kernel=1, stride=1, sn=sn, scope='h_conv') # [bs, h, w, c]# N = h * ws = tf.matmul(hw_flatten(g), hw_flatten(f), transpose_b=True) # # [bs, N, N]beta = tf.nn.softmax(s, axis=-1)  # attention mapo = tf.matmul(beta, hw_flatten(h)) # [bs, N, C]gamma = tf.get_variable("gamma", [1], initializer=tf.constant_initializer(0.0))o = tf.reshape(o, shape=x.shape) # [bs, h, w, C]x = gamma * o + xreturn x

生成器

    def generator(self, z, is_training=True, reuse=False):with tf.variable_scope("generator", reuse=reuse):ch = 1024x = deconv(z, channels=ch, kernel=4, stride=1, padding='VALID', use_bias=False, sn=self.sn, scope='deconv')x = batch_norm(x, is_training, scope='batch_norm')x = relu(x)for i in range(self.layer_num // 2):if self.up_sample:x = up_sample(x, scale_factor=2)x = conv(x, channels=ch // 2, kernel=3, stride=1, pad=1, sn=self.sn, scope='up_conv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm_' + str(i))x = relu(x)else:x = deconv(x, channels=ch // 2, kernel=4, stride=2, use_bias=False, sn=self.sn, scope='deconv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm_' + str(i))x = relu(x)ch = ch // 2# Self Attentionx = self.attention(x, ch, sn=self.sn, scope="attention", reuse=reuse)for i in range(self.layer_num // 2, self.layer_num):if self.up_sample:x = up_sample(x, scale_factor=2)x = conv(x, channels=ch // 2, kernel=3, stride=1, pad=1, sn=self.sn, scope='up_conv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm_' + str(i))x = relu(x)else:x = deconv(x, channels=ch // 2, kernel=4, stride=2, use_bias=False, sn=self.sn, scope='deconv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm_' + str(i))x = relu(x)ch = ch // 2if self.up_sample:x = up_sample(x, scale_factor=2)x = conv(x, channels=self.c_dim, kernel=3, stride=1, pad=1, sn=self.sn, scope='G_conv_logit')x = tanh(x)else:x = deconv(x, channels=self.c_dim, kernel=4, stride=2, use_bias=False, sn=self.sn, scope='G_deconv_logit')x = tanh(x)return x

判别器

    def discriminator(self, x, is_training=True, reuse=False):with tf.variable_scope("discriminator", reuse=reuse):ch = 64x = conv(x, channels=ch, kernel=4, stride=2, pad=1, sn=self.sn, use_bias=False, scope='conv')x = lrelu(x, 0.2)for i in range(self.layer_num // 2):x = conv(x, channels=ch * 2, kernel=4, stride=2, pad=1, sn=self.sn, use_bias=False, scope='conv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm' + str(i))x = lrelu(x, 0.2)ch = ch * 2# Self Attentionx = self.attention(x, ch, sn=self.sn, scope="attention", reuse=reuse)for i in range(self.layer_num // 2, self.layer_num):x = conv(x, channels=ch * 2, kernel=4, stride=2, pad=1, sn=self.sn, use_bias=False, scope='conv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm' + str(i))x = lrelu(x, 0.2)ch = ch * 2x = conv(x, channels=4, stride=1, sn=self.sn, use_bias=False, scope='D_logit')return x

更多细节请参考SAGAN


上面贴的代码是 tensorflow版的没有用spectral normalization。
这个pytorch版使用了spectral normalization。
spectral normalization的具体实现可以看这里

 

【转载】:https://www.jianshu.com/p/0540fb554088

                   https://github.com/heykeetae/Self-Attention-GAN

                   https://github.com/taki0112/Self-Attention-GAN-Tensorflow

这篇关于Self-Attention Generative Adversarial Networks解读+部分代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123753

相关文章

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

MCU7.keil中build产生的hex文件解读

1.hex文件大致解读 闲来无事,查看了MCU6.用keil新建项目的hex文件 用FlexHex打开 给我的第一印象是:经过软件的解释之后,发现这些数据排列地十分整齐 :02000F0080FE71:03000000020003F8:0C000300787FE4F6D8FD75810702000F3D:00000001FF 把解释后的数据当作十六进制来观察 1.每一行数据

Java ArrayList扩容机制 (源码解读)

结论:初始长度为10,若所需长度小于1.5倍原长度,则按照1.5倍扩容。若不够用则按照所需长度扩容。 一. 明确类内部重要变量含义         1:数组默认长度         2:这是一个共享的空数组实例,用于明确创建长度为0时的ArrayList ,比如通过 new ArrayList<>(0),ArrayList 内部的数组 elementData 会指向这个 EMPTY_EL

poj 2976 分数规划二分贪心(部分对总体的贡献度) poj 3111

poj 2976: 题意: 在n场考试中,每场考试共有b题,答对的题目有a题。 允许去掉k场考试,求能达到的最高正确率是多少。 解析: 假设已知准确率为x,则每场考试对于准确率的贡献值为: a - b * x,将贡献值大的排序排在前面舍弃掉后k个。 然后二分x就行了。 代码: #include <iostream>#include <cstdio>#incl

计算机毕业设计 大学志愿填报系统 Java+SpringBoot+Vue 前后端分离 文档报告 代码讲解 安装调试

🍊作者:计算机编程-吉哥 🍊简介:专业从事JavaWeb程序开发,微信小程序开发,定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事,生活就是快乐的。 🍊心愿:点赞 👍 收藏 ⭐评论 📝 🍅 文末获取源码联系 👇🏻 精彩专栏推荐订阅 👇🏻 不然下次找不到哟~Java毕业设计项目~热门选题推荐《1000套》 目录 1.技术选型 2.开发工具 3.功能

代码随想录冲冲冲 Day39 动态规划Part7

198. 打家劫舍 dp数组的意义是在第i位的时候偷的最大钱数是多少 如果nums的size为0 总价值当然就是0 如果nums的size为1 总价值是nums[0] 遍历顺序就是从小到大遍历 之后是递推公式 对于dp[i]的最大价值来说有两种可能 1.偷第i个 那么最大价值就是dp[i-2]+nums[i] 2.不偷第i个 那么价值就是dp[i-1] 之后取这两个的最大值就是d

pip-tools:打造可重复、可控的 Python 开发环境,解决依赖关系,让代码更稳定

在 Python 开发中,管理依赖关系是一项繁琐且容易出错的任务。手动更新依赖版本、处理冲突、确保一致性等等,都可能让开发者感到头疼。而 pip-tools 为开发者提供了一套稳定可靠的解决方案。 什么是 pip-tools? pip-tools 是一组命令行工具,旨在简化 Python 依赖关系的管理,确保项目环境的稳定性和可重复性。它主要包含两个核心工具:pip-compile 和 pip

什么是 Flash Attention

Flash Attention 是 由 Tri Dao 和 Dan Fu 等人在2022年的论文 FlashAttention: Fast and Memory-Efficient Exact Attention with IO-Awareness 中 提出的, 论文可以从 https://arxiv.org/abs/2205.14135 页面下载,点击 View PDF 就可以下载。 下面我

D4代码AC集

贪心问题解决的步骤: (局部贪心能导致全局贪心)    1.确定贪心策略    2.验证贪心策略是否正确 排队接水 #include<bits/stdc++.h>using namespace std;int main(){int w,n,a[32000];cin>>w>>n;for(int i=1;i<=n;i++){cin>>a[i];}sort(a+1,a+n+1);int i=1