Self-Attention Generative Adversarial Networks解读+部分代码

本文主要是介绍Self-Attention Generative Adversarial Networks解读+部分代码,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

     Self-Attention Generative Adversarial Networks解读+部分代码
 

引言

这篇是文章是Ian goodfellow他们的新工作,在GAN中引入Attention。
在文章的摘要中作者主要突出了三点。
Self-Attention Generative Adversarial Network(SAGAN)是一个注意力驱动,长范围 关联模型(attention-driven, long-range dependency modeling )。
传统的GAN在生成高分辨率的细节时,是基于低分辨率的feature map中的某一个小部分的。而SAGAN是基于所有的特征点(all feature locations).
在训练时使用了光谱归一化(spectral normalization )来提升训练强度(training dynamics)。

SAGAN的优势

  • 可以很好的处理长范围、多层次的依赖(可以很好的发现图像中的依赖关系)
  • 生成图像时每一个位置的细节和远端的细节协调好
  • 判别器还可以更准确地对全局图像结构实施复杂的几何约束

因为文章提到了long range 所以这里的远端,个人的理解是前几层卷积的output。

SAGAN

作者提到,大多数的GAN都使用了卷积,但是在处理long range依赖时,卷积的效率很低,所以他们采用了non-local model

x 被送入两个特征空间f,g去计算attention。

Bij 表示在生成第j个区域时,是否关注第i个位置。



上面是每个可学习矩阵的纬度,都是用1X1卷积实现的。



在文章的所有实验中都用到了上面这个超参。

之后再带权相加,得到融合了attention的feature map


γ的值初始化为0,这是因为在最开始,只需要依赖于局部信息,之后在慢慢增大权重加入non-local evidence.
在训练过程中还使用了光谱归一化(spectral normalization)和two-timescale update rule(TTUR)来稳定训练。

部分代码

attention 具体实现

    def attention(self, x, ch, sn=False, scope='attention', reuse=False):with tf.variable_scope(scope, reuse=reuse):f = conv(x, ch // 8, kernel=1, stride=1, sn=sn, scope='f_conv') # [bs, h, w, c']g = conv(x, ch // 8, kernel=1, stride=1, sn=sn, scope='g_conv') # [bs, h, w, c']h = conv(x, ch, kernel=1, stride=1, sn=sn, scope='h_conv') # [bs, h, w, c]# N = h * ws = tf.matmul(hw_flatten(g), hw_flatten(f), transpose_b=True) # # [bs, N, N]beta = tf.nn.softmax(s, axis=-1)  # attention mapo = tf.matmul(beta, hw_flatten(h)) # [bs, N, C]gamma = tf.get_variable("gamma", [1], initializer=tf.constant_initializer(0.0))o = tf.reshape(o, shape=x.shape) # [bs, h, w, C]x = gamma * o + xreturn x

生成器

    def generator(self, z, is_training=True, reuse=False):with tf.variable_scope("generator", reuse=reuse):ch = 1024x = deconv(z, channels=ch, kernel=4, stride=1, padding='VALID', use_bias=False, sn=self.sn, scope='deconv')x = batch_norm(x, is_training, scope='batch_norm')x = relu(x)for i in range(self.layer_num // 2):if self.up_sample:x = up_sample(x, scale_factor=2)x = conv(x, channels=ch // 2, kernel=3, stride=1, pad=1, sn=self.sn, scope='up_conv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm_' + str(i))x = relu(x)else:x = deconv(x, channels=ch // 2, kernel=4, stride=2, use_bias=False, sn=self.sn, scope='deconv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm_' + str(i))x = relu(x)ch = ch // 2# Self Attentionx = self.attention(x, ch, sn=self.sn, scope="attention", reuse=reuse)for i in range(self.layer_num // 2, self.layer_num):if self.up_sample:x = up_sample(x, scale_factor=2)x = conv(x, channels=ch // 2, kernel=3, stride=1, pad=1, sn=self.sn, scope='up_conv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm_' + str(i))x = relu(x)else:x = deconv(x, channels=ch // 2, kernel=4, stride=2, use_bias=False, sn=self.sn, scope='deconv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm_' + str(i))x = relu(x)ch = ch // 2if self.up_sample:x = up_sample(x, scale_factor=2)x = conv(x, channels=self.c_dim, kernel=3, stride=1, pad=1, sn=self.sn, scope='G_conv_logit')x = tanh(x)else:x = deconv(x, channels=self.c_dim, kernel=4, stride=2, use_bias=False, sn=self.sn, scope='G_deconv_logit')x = tanh(x)return x

判别器

    def discriminator(self, x, is_training=True, reuse=False):with tf.variable_scope("discriminator", reuse=reuse):ch = 64x = conv(x, channels=ch, kernel=4, stride=2, pad=1, sn=self.sn, use_bias=False, scope='conv')x = lrelu(x, 0.2)for i in range(self.layer_num // 2):x = conv(x, channels=ch * 2, kernel=4, stride=2, pad=1, sn=self.sn, use_bias=False, scope='conv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm' + str(i))x = lrelu(x, 0.2)ch = ch * 2# Self Attentionx = self.attention(x, ch, sn=self.sn, scope="attention", reuse=reuse)for i in range(self.layer_num // 2, self.layer_num):x = conv(x, channels=ch * 2, kernel=4, stride=2, pad=1, sn=self.sn, use_bias=False, scope='conv_' + str(i))x = batch_norm(x, is_training, scope='batch_norm' + str(i))x = lrelu(x, 0.2)ch = ch * 2x = conv(x, channels=4, stride=1, sn=self.sn, use_bias=False, scope='D_logit')return x

更多细节请参考SAGAN


上面贴的代码是 tensorflow版的没有用spectral normalization。
这个pytorch版使用了spectral normalization。
spectral normalization的具体实现可以看这里

 

【转载】:https://www.jianshu.com/p/0540fb554088

                   https://github.com/heykeetae/Self-Attention-GAN

                   https://github.com/taki0112/Self-Attention-GAN-Tensorflow

这篇关于Self-Attention Generative Adversarial Networks解读+部分代码的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1123753

相关文章

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

MySQL中的MVCC底层原理解读

《MySQL中的MVCC底层原理解读》本文详细介绍了MySQL中的多版本并发控制(MVCC)机制,包括版本链、ReadView以及在不同事务隔离级别下MVCC的工作原理,通过一个具体的示例演示了在可重... 目录简介ReadView版本链演示过程总结简介MVCC(Multi-Version Concurr

关于Gateway路由匹配规则解读

《关于Gateway路由匹配规则解读》本文详细介绍了SpringCloudGateway的路由匹配规则,包括基本概念、常用属性、实际应用以及注意事项,路由匹配规则决定了请求如何被转发到目标服务,是Ga... 目录Gateway路由匹配规则一、基本概念二、常用属性三、实际应用四、注意事项总结Gateway路由