Deformable Convolutional Networks解读

2024-08-24 18:08

本文主要是介绍Deformable Convolutional Networks解读,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这篇论文是daijifeng老师又一篇好文,一贯的好想法,而且实现的很漂亮,arxiv link

Motivation

现实图片中的物体变化很多,之前只能通过数据增强来使网络“记住”这些变种如n object scale, pose, viewpoint, and part deformation,但是这种数据增强只能依赖一些先验知识比如反转后物体类别不变等,但是有些变化是未知而且手动设计太不灵活,不易泛化和迁移。本文就从cnn model的基础结构入手,比如卷积采样时位置是固定的,pool时采样位置也是固定,roi pool也是把roi分成固定的空间bins,这些它就不能处理几何的变化,出现了一些问题,比如编码语义或者空间信息的高层神经元不希望同一层的每个激活单元元的感受野是一样的。在检测中都是以bbox提取特征,这对于非格子的物体是不利的。因此本文提出了可变形的卷积神经网络。

举例: 3x3的卷积或pool,正常的cnn网络采样固定的9个点,而改进后,这九个采样点是可以变形的,特殊的情况如©是放大了(d)是旋转了
这里写图片描述

实现

普通cnn

以3x3卷积为例
对于每个输出y(p0),都要从x上采样9个位置,这9个位置都在中心位置x(p0)向四周扩散得到的gird形状上,(-1,-1)代表x(p0)的左上角,(1,1)代表x(p0)的右下角,其他类似。
这里写图片描述
这里写图片描述

可变形cnn

同样对于每个输出y(p0),都要从x上采样9个位置,这9个位置是中心位置x(p0)向四周扩散得到的,但是多了一个新的参数 ∆pn,允许采样点扩散成非gird形状
这里写图片描述

注意∆pn很有可能是小数,而feature map x上都是整数位置,这时候需要双线性插值

这个地方不仅需要反传w(pn) x(p0 + pn + ∆pn)的梯度,还需要反传∆pn的梯度,需要仔细介绍下双线性插值

双线性插值

线性插值

已知数据 (x0, y0) 与 (x1, y1),要计算 [x0, x1] 区间内某一位置 x 在直线上的y值(或某一位置y子啊直线上的x值,类似)
用x和x0,x1的距离作为一个权重,用于y0和y1的加权
这里写图片描述

双线性插值

双线性插值本质上就是在两个方向上做线性插值。
x§的浮点坐标为(i+u,j+v) (其中i、j均为浮点坐标的整数部分,u、v为浮点坐标的小数部分,是取值[0,1)区间的浮点数),则这个点的像素值x§: (i+u,j+v) 可由坐标为 x(q1): (i,j)、x(q2): (i+1,j)、x(q3): (i,j+1)、x(q4): (i+1,j+1)所对应的周围四个像素的值决定

  1. 先在x方向上做线性插值得到t1 t2的像素值
  2. 再在y方向做线性插值最终得到x§的像素值
    最终公式:
f(i+u,j+v) = (1-u)(1-v)f(i,j) + (1-u)vf(i,j+1) + u(1-v)f(i+1,j) + uvf(i+1,j+1) (一)

这里写图片描述

对应到可变形卷积上求x§
这里写图片描述
这里写图片描述
g(a, b) = max(0, 1 − |a − b|). q就是临近的4个点, p0,pn,∆pn都是二维坐标,可带入公式一

然后求导求梯度
这里写图片描述
∂G(q,p0+pn+∆pn) / ∂∆pn 可由公式一求出

结构

Deformable Convolution

这个offset是通过在input feature上加个卷积,这个卷积的大小和dilation和本身的卷积是一致的。

The output offset fields have the same spatial resolution with the input feature map
我对这句话有异议,应该是和输出的feature map大小一致吧。对于每个输出feature map上的每个点都有2*3*3个偏移值。加上上一句这个卷积的大小和dilation和本身的卷积是一致的当然和输出的feature map大小一致了,代码里也是这样体现的

res5a_branch2a_relu = mx.symbol.Activation(name='res5a_branch2a_relu', data=scale5a_branch2a, act_type='relu')
# 和DeformableConvolution卷积的参数都一致 
# num_filter=num_deformable_group * 2 * kernel_height * kernel_width 
# num_deformable_group可忽略,类似于组卷积,所以72/4=18=2*3*3
res5a_branch2b_offset = mx.symbol.Convolution(name='res5a_branch2b_offset', data=res5a_branch2a_relu,num_filter=72, pad=(2, 2), kernel=(3, 3), stride=(1, 1), dilate=(2, 2), cudnn_off=True)res5a_branch2b = mx.contrib.symbol.DeformableConvolution(name='res5a_branch2b', data=res5a_branch2a_relu, offset=res5a_branch2b_offset,num_filter=512, pad=(2, 2), kernel=(3, 3), num_deformable_group=4, stride=(1, 1), dilate=(2, 2), no_bias=True)

这里写图片描述

Deformable RoI Pooling

RoI Pooling

首先,RoI池化(方程(5))生成池化后的特征映射。从特征映射中,一个fc层产生归一化偏移量ΔpˆijΔpij,然后通过与RoI的宽和高进行逐元素的相乘将其转换为方程(6)中的偏移量ΔpijΔpij,如:Δpij=γ⋅Δpˆij∘(w,h)Δpij=γ⋅Δpij∘(w,h)。这里γγ是一个预定义的标量来调节偏移的大小。它经验地设定为γ=0.1γ=0.1。为了使偏移学习对RoI大小具有不变性,偏移归一化是必要的。这部分不是太理解。
这里写图片描述

Position-Sensitive (PS) RoI Pooling
# 用1*1的卷积得到offset 2K*k(C+1)
rfcn_cls_offset_t = mx.sym.Convolution(data=relu_new_1, kernel=(1, 1), num_filter=2 * 7 * 7 * num_classes, name="rfcn_cls_offset_t")rfcn_bbox_offset_t = mx.sym.Convolution(data=relu_new_1, kernel=(1, 1), num_filter=7 * 7 * 2, name="rfcn_bbox_offset_t")

这里写图片描述

参考:
Deformable_Convolutional_Networks_Oral
[图像缩放——双线性插值算法(http://blog.csdn.net/xiaqunfeng123/article/details/17362881)
三十分钟理解:线性插值,双线性插值Bilinear Interpolation算法
Deformable Convolutional Networks论文翻译——中英文对照
代码: msracver/Deformable-ConvNets

这篇关于Deformable Convolutional Networks解读的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/1103219

相关文章

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringCloud负载均衡spring-cloud-starter-loadbalancer解读

《SpringCloud负载均衡spring-cloud-starter-loadbalancer解读》:本文主要介绍SpringCloud负载均衡spring-cloud-starter-loa... 目录简述主要特点使用负载均衡算法1. 轮询负载均衡策略(Round Robin)2. 随机负载均衡策略(

解读spring.factories文件配置详情

《解读spring.factories文件配置详情》:本文主要介绍解读spring.factories文件配置详情,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录使用场景作用内部原理机制SPI机制Spring Factories 实现原理用法及配置spring.f

Spring MVC使用视图解析的问题解读

《SpringMVC使用视图解析的问题解读》:本文主要介绍SpringMVC使用视图解析的问题解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring MVC使用视图解析1. 会使用视图解析的情况2. 不会使用视图解析的情况总结Spring MVC使用视图

Linux中的进程间通信之匿名管道解读

《Linux中的进程间通信之匿名管道解读》:本文主要介绍Linux中的进程间通信之匿名管道解读,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、基本概念二、管道1、温故知新2、实现方式3、匿名管道(一)管道中的四种情况(二)管道的特性总结一、基本概念我们知道多

Linux系统之authconfig命令的使用解读

《Linux系统之authconfig命令的使用解读》authconfig是一个用于配置Linux系统身份验证和账户管理设置的命令行工具,主要用于RedHat系列的Linux发行版,它提供了一系列选项... 目录linux authconfig命令的使用基本语法常用选项示例总结Linux authconfi

解读docker运行时-itd参数是什么意思

《解读docker运行时-itd参数是什么意思》在Docker中,-itd参数组合用于在后台运行一个交互式容器,同时保持标准输入和分配伪终端,这种方式适合需要在后台运行容器并保持交互能力的场景... 目录docker运行时-itd参数是什么意思1. -i(或 --interactive)2. -t(或 --

解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题

《解读为什么@Autowired在属性上被警告,在setter方法上不被警告问题》在Spring开发中,@Autowired注解常用于实现依赖注入,它可以应用于类的属性、构造器或setter方法上,然... 目录1. 为什么 @Autowired 在属性上被警告?1.1 隐式依赖注入1.2 IDE 的警告:

Rust中的注释使用解读

《Rust中的注释使用解读》本文介绍了Rust中的行注释、块注释和文档注释的使用方法,通过示例展示了如何在实际代码中应用这些注释,以提高代码的可读性和可维护性... 目录Rust 中的注释使用指南1. 行注释示例:行注释2. 块注释示例:块注释3. 文档注释示例:文档注释4. 综合示例总结Rust 中的注释

解读Pandas和Polars的区别及说明

《解读Pandas和Polars的区别及说明》Pandas和Polars是Python中用于数据处理的两个库,Pandas适用于中小规模数据的快速原型开发和复杂数据操作,而Polars则专注于高效数据... 目录Pandas vs Polars 对比表使用场景对比Pandas 的使用场景Polars 的使用