convolutional专题

Neighborhood Homophily-based Graph Convolutional Network

#paper/ccfB 推荐指数: #paper/⭐ #pp/图结构学习 流程 重定义同配性指标: N H i k = ∣ N ( i , k , c m a x ) ∣ ∣ N ( i , k ) ∣ with c m a x = arg ⁡ max ⁡ c ∈ [ 1 , C ] ∣ N ( i , k , c ) ∣ NH_i^k=\frac{|\mathcal{N}(i,k,c_{

Convolutional Neural Networks for Sentence Classification论文解读

基本信息 作者Yoon Kimdoi发表时间2014期刊EMNLP网址https://doi.org/10.48550/arXiv.1408.5882 研究背景 1. What’s known 既往研究已证实 CV领域著名的CNN。 2. What’s new 创新点 将CNN应用于NLP,打破了传统NLP任务主要依赖循环神经网络(RNN)及其变体的局面。 用预训练的词向量(如word2v

REMEMBERING HISTORY WITH CONVOLUTIONAL LSTM FOR ANOMALY DETECTION——利用卷积LSTM记忆历史进行异常检测

上海科技大学的文章,上海科技大学有个组一直在做这方面的工作,好文章挺多的还有数据集。 ABSTRACT 本文解决了视频中的异常检测问题,由于异常是无界的,所以异常检测是一项极具挑战性的任务。我们通过利用卷积神经网络(CNN或ConvNet)对每一帧进行外观编码,并利用卷积长期记忆(ConvLSTM)来记忆与运动信息相对应的所有过去的帧来完成这项任务。然后将ConvNet和ConvLSTM与

吴恩达深度学习笔记:卷积神经网络(Foundations of Convolutional Neural Networks)1.9-1.10

目录 第四门课 卷积神经网络(Convolutional Neural Networks)第一周 卷积神经网络(Foundations of Convolutional Neural Networks)1.9 池化层(Pooling layers)1.10 卷 积 神 经 网 络 示 例 ( Convolutional neural network example) 第四门课

YOLO前篇---Real-Time Grasp Detection Using Convolutional Neural Networks

论文地址:https://arxiv.org/abs/1412.3128 1. 摘要 比目前最好的方法提高了14%的精度,在GPU上能达到13FPS 2. 基于神经网络的抓取检测 A 结构 使用AlexNet网络架构,5个卷积层+3个全连接层,卷积层有正则化和最大池化层网络结构示意图如下 B 直接回归抓取 最后一个全连接层输出6个神经元,前4个与位置和高度相关,另外2个用来表示方向

Convolutional layers/Pooling layers/Dense Layer 卷积层/池化层/稠密层

Convolutional layers/Pooling layers/Dense Layer 卷积层/池化层/稠密层 Convolutional layers 卷积层 Convolutional layers, which apply a specified number of convolution filters to the image. For each subregion, the

C++卷积神经网络实例:tiny_cnn代码详解(5)——convolutional_layer类结构信息之其他成员函数

在上一篇博客中我们介绍了convolutional_layer类的基本结构及其成员变量、构造函数的相关信息,在这篇博文中我们对其中剩余的其他成员函数进行分析。首先把convolutional_layer类的结构图给出来:   可见,convolutional_layer类除了构造函数之外,还有另外两部分成员函数,一部分负责定义当前卷积层与前一层之间的连接关系,另一部分则完成convolu

C++卷积神经网络实例:tiny_cnn代码详解(4)——convolutional_layer类结构信息之成员变量与构造函数

在之前的博文中我们已经对tiny_cnn框架的整体类结构做了大致分析,阐明了各个类之间的继承依赖关系,在接下来的几篇博文中我们将分别对各个类进行更为详细的分析,明确其内部具体功能实现。在这篇博文中着重分析convolutional_layer类。convolutional_layer封装的是卷积神经网络中的卷积层网路结构,其在主程序中对应的初始化部分代码如下:   可见在测试程序中我们构

Learning a Deep Convolutional Network for Image Super-Resolution

Abstract 我们提出了一种单图像超分辨率(SR)的深度学习方法。 我们的方法直接学习低/高分辨率图像之间的端到端映射。 该映射表示为深度卷积神经网络(CNN),它将低分辨率图像作为输入并输出高分辨率图像。 我们进一步表明,传统的基于稀疏编码的SR方法也可以被视为深度卷积网络。但与分别处理每个组件的传统方法不同,我们的方法共同优化所有层。 我们的深CNN具有轻质结构,同时展示了最先进的修复质

Visual Convolutional Neural Network论文关键点

前言:这篇论文是2013年11月发表在CVPR上的,当时正值卷积神经网络在计算机视觉任务中初放光彩。17年刚刚接触深度学习的时候看过这篇论文,当时也是在组会上讲过。以下就是大概的讲解思路。但是当时看这篇论文没有太大的感觉,觉得这篇论文只是做了一个非常简单的事情,所以主要是从宏观上说明了一下可视化卷积神经网络的作用。前两天偶然翻出来这篇论文,却觉得论文里有些地方挺有意思的,果然论文和人颇有相似,讲

Layer-refined Graph Convolutional Networks for Recommendation【ICDE2023】

Layer-refined Graph Convolutional Networks for Recommendation 论文:https://arxiv.org/abs/2207.11088 源码:https://github.com/enoche/MMRec/blob/master/README.md 摘要 基于图卷积网络(GCN)的抽象推荐模型综合了用户-项目交互图的节点信息和拓

Deformable Convolutional Networks解读

这篇论文是daijifeng老师又一篇好文,一贯的好想法,而且实现的很漂亮,arxiv link Motivation 现实图片中的物体变化很多,之前只能通过数据增强来使网络“记住”这些变种如n object scale, pose, viewpoint, and part deformation,但是这种数据增强只能依赖一些先验知识比如反转后物体类别不变等,但是有些变化是未知而且手动设

论文笔记 DenseCap: Fully Convolutional Localization Networks for Dense Captioning

李飞飞组的文章,是一篇很有意思的文章,主要介绍了一种CNN解决密集字幕任务的方法。密集字幕任务主要含两个方面: (1)单个单词描述的目标检测任务;(2)对整个图像的一个预测区域的字幕标注任务。具体任务需求如下: 文章主要提出了全卷积定位网络(FCLN)架构,无需外部区域的建议,并可以用单轮优化进行端对端的训练。该架构包含一个卷积网络,一个新的密集定位层,一个生成标签序列的递归神经网络的语言

模型压缩:Networks Slimming-Learning Efficient Convolutional Networks through Network Slimming

Network Slimming-Learning Efficient Convolutional Networks through Network Slimming(Paper) 2017年ICCV的一篇paper,思路清晰,骨骼清奇~~ 创新点: 1. 利用batch normalization中的缩放因子γ 作为重要性因子,即γ越小,所对应的channel不太重要,就可以裁剪(prun

Deformable Convolutional可变形卷积回顾

点击上方“AI公园”,关注公众号,选择加“星标“或“置顶” 作者:Sik-Ho Tsang 编译:ronghuaiyang 导读 使用可变形卷积,可以提升Faster R-CNN和R-FCN在物体检测和分割上的性能。只要增加很少的计算量,就可以得到性能的提升,非常好的文章,值的一看。 (a) Conventional Convolution, (b) Deformable Convol

Age and gender estimation based on Convolutional Neural Network and TensorFlow

训练数据处理 imdb数据提取 gender: 0 for female and 1 for male, NaN if unknown age: 年龄分为101类,分别为从0到100岁. 将训练数据转换为tfrecords格式,命令为, python convert_to_records_multiCPU.py --imdb --nworks 8 --imdb_db /home/rese

图卷积网络(Graph Convolutional Network, GCN)

图卷积网络(Graph Convolutional Network, GCN)是一种用于处理图结构数据的深度学习模型。GCN编码器的核心思想是通过邻接节点的信息聚合来更新节点表示。 图的表示 一个图 G通常表示为 G=(V,E),其中: V 是节点集合,包含 N个节点。E是边集合,包含图中所有的边。 节点特征矩阵 假设每个节点 i有一个特征向量 (维度为 F),所有节点的特征可以表示为矩

【网络裁剪】——Learning Efficient Convolutional Networks through Network Slimming

转载自:https://blog.csdn.net/h__ang/article/details/89376079 亮点:ICCV 2017 论文链接:https://arxiv.org/abs/1708.06519 官方代码(Torch实现):https://github.com/liuzhuang13/slimming 第三方代码(PyTorch实现):https://github.c

【论文阅读】Semantic Segmentation with deep convolutional nets and fully connected CRFs

一、摘要 深度卷积神经网络(DCNN)最近在高级视觉任务中展示了最先进的性能,例如图像分类和对象检测。这项工作汇集了来自DCNN和概率图形模型的方法,用于解决像素级分类(也称为“语义图像分割”)的任务。我们表明DCNN最后一层的响应没有充分定位,无法进行精确的对象分割。这是由于非常不变的属性使DCNN有利于高级任务。 我们通过将最终DCNN层的响应与完全连接的条件随机场(CRF

【论文阅读】semantic image segmentation with deep convolutional nets and fully connected CRFs

文章的主要贡献: 速度:带atrous算法的DCNN可以保持8FPS的速度,全连接CRF平均推断需要0.5s;准确:在PASCAL语义分割挑战中获得了第二的成绩;简单:DeepLab是由两个非常成熟的模块(DCNN和CRFs)级联而成。 一、概述 自LeCun(1998)以来,DCNN一直被选作版面识别的方法,如今已经成为高级视觉研究的主流,提高了计算机视觉性能,广泛应用于图像分割,对

RNN学习笔记:Understanding Deep Architectures using a Recursive Convolutional Network

reference link:http://blog.csdn.net/whiteinblue/article/details/43451383  本文是纽约大学Yann LeCun团队中Pierre Sermanet ,David Eigen和张翔等在13年撰写的一篇论文,本文改进了Alex-net,并用图像缩放和滑窗方法在test数据集上测试网络;提出了一种图像定位的方法;最后通过一个

深度学习tracking学习笔记(1):Visual Tracking with Fully Convolutional Networks

reference:http://blog.csdn.net/carrierlxksuper/article/details/48918297 两个属性 1)不同层上的CNN特征可以针对不同的tracking问题。越top层的特征越抽象,并且具有语义信息。这些特征的优势在于区分不同类别,同时对于形变和遮挡robust(下图a)。但是他们的缺点是无法区别类内的物体,比如不同人(下图b)

风格迁移学习笔记(1):Multimodal Transfer: A Hierarchical Deep Convolutional Neural Network for Fast

以下将分为3个部分介绍: 效果解決的問題How to solve it? 1.效果: 先来看一下效果

3D点云论阅读:ShellNet:Efficient Point Cloud Convolutional Neural Networks using Concentric Shells Statics

论文:http://openaccess.thecvf.com/content_ICCV_2019/papers/Zhang_ShellNet_Efficient_Point_Cloud_Convolutional_Neural_Networks_Using_Concentric_Shells_ICCV_2019_paper.pdf 源码:https://github.com/hkust-vgd

论文阅读笔记之Deformable Convolutional Networks

论文地址:https://arxiv.org/abs/1703.06211 摘要:卷积神经网络的固定几何结构限制了模型对物体形变的建模能力,在本工作中,我们引入了两个新的模块来增强CNNs的形变建模能力,即可变形卷积和可变形RoI池。通过额外的偏移量参数增强空间位置采样能力,并从目标任务中学习偏移量,不需要附加偏移量监督。新模块可以很容易的在现有网络中进行替换,通过标准反向传播很容易进行端到端的

论文阅读:《Convolutional Neural Networks for Sentence Classification》

重磅专栏推荐: 《大模型AIGC》 《课程大纲》 《知识星球》 本专栏致力于探索和讨论当今最前沿的技术趋势和应用领域,包括但不限于ChatGPT和Stable Diffusion等。我们将深入研究大型模型的开发和应用,以及与之相关的人工智能生成内容(AIGC)技术。通过深入的技术解析和实践经验分享,旨在帮助读者更好地理解和应用这些领域的最新进展 论文地址:http://xueshu