C++卷积神经网络实例:tiny_cnn代码详解(4)——convolutional_layer类结构信息之成员变量与构造函数

本文主要是介绍C++卷积神经网络实例:tiny_cnn代码详解(4)——convolutional_layer类结构信息之成员变量与构造函数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

  在之前的博文中我们已经对tiny_cnn框架的整体类结构做了大致分析,阐明了各个类之间的继承依赖关系,在接下来的几篇博文中我们将分别对各个类进行更为详细的分析,明确其内部具体功能实现。在这篇博文中着重分析convolutional_layer类。convolutional_layer封装的是卷积神经网络中的卷积层网路结构,其在主程序中对应的初始化部分代码如下:

  可见在测试程序中我们构建了一个具有五层网络结构(不包括全连接层)的神经网络结构,这也正是LeNet-5的结构,在其中一共有三层为卷积层,因此可见卷积层在CNN中所起的重要中用,接下来就从“convolutional_layer<tan_h>(32, 32, 5, 1, 6)”这个代码入手对convolutional_layer类进行分析。首先给出convolutional_layer类的整体结构:

  一、成员变量

  convolutional_layer类一共有五个私有的成员变量,in_保存了输入数据矩阵的基本属性:行数、列数、维数;out_保存了输出特征矩阵的基本形式:函数、列数、维数;weight_保存了权重矩阵的基本形式。connection_保存了当前卷积层与上一层(下采样层)之间的连接关系,window_size_保存了当前层卷积核尺寸。

  这里有一点需要强调,in_、out_、weight_三个变量均是index3d<layer_size_t>形式,这里的index3d实际上指的是一个三元vector类型,其声明位于util.h文件中:

  所以index3d类型的变量能够保存三个数值信息,并能够在其内部做一些简要运算。

  二、构造函数

  在研究完类的成员变量之后,接下来需要分析其内部的函数实现形式,以求对这个类的功能以及相关结构有更好的理解。convolutional_layer类的成员函数大体上可以分为三部分:构造函数、层间连接构造函数、返回函数。其中构造函数承担了成员变量的初始化任务。

  2.1 构造函数的两种形式

  convolutional_layer类提供了两种构造函数的形式,一种是采用默认的连接方式,也就是和前一层的卷积输出进行全连接,定义如下:

  这里的connection_table()会返回一个默认的全零矩阵,然后init_connection()函数会将默认成员变量connection_初始化为全零矩阵,全零矩阵也就默认是全连接模式,这点稍后会给出详细分析。

  convolutional_layer的第二种构造函数需要人为指定与前一层的连接形式,具体如下:

  这里connection_table是由外部传入的、用户指定的连接矩阵,通过init_connection函数将其赋值给connection_。

  2.2 构造函数输入参数

  接来下对构造函数的参数以及与基类构造函数的继承关系进行分析。首先,convolutional_layer类在执行构造时一共需要以下几个参数: 

  in_width:输入图片宽度(矩阵行数);

  in_height:输入图片高度(矩阵列数);

  window_size:卷积窗口大小;

  in_channels:输入的模板数;

  out_channels:输出的模板数

  connection_table:矩阵的连接形式,可以默认生成也可以用户指定。

  由于convolutional_layer类是继承自partial_connected_layer类,因此在执行convolutional_layer构造函数的过程中,首先需要执行其基类partial_connected_layer类的构造函数:

partial_connected_layer<Activation>(in_width * in_height * in_channels, (in_width - window_size + 1) * (in_height - window_size + 1) * out_channels, sqr(window_size) * in_channels * out_channels, out_channels), 

  有关partial_connected_layer类的构造函数我会在介绍partial_connected_layer类的博文中专门进行分析,这里就先不做过多的表述,接下来需要分析的是在convolutional_layer的构造函数中是如何实现对其成员变量的初始化的,具体代码如下:

  (1)in_作为卷积层的输入参数,直接保存输入数据矩阵的尺寸以及通道数即可(单通道或者三通道);

  (2)out_作为卷积层的特征输出,由于存在滑动窗口卷积的缘故,导致其输出的特征矩阵的尺寸与输入的数据矩阵的尺寸不一致,具体值为“in_width - window_size + 1”和“in_height - window_size + 1”,并且输出的特征模板数量与指定的out_channels相当。

  (3)weight_作为卷积层的权重矩阵,其尺寸自然应当和卷积核的尺寸相当,至于个数,则为输入数据矩阵数量*输出特征模板数量,即每个映射核完成一个输入矩阵到一个输出矩阵之间的映射任务,这就是所谓的权值共享和感受野的概念。

  (4)connection_为卷积网络与前一层(下采样层)的连接形式矩阵,保存了表示连接与否标志位的矩阵,在LeNet-5网络中,第一个卷积层与输入层是全连接的,第二个卷积层和下采样层的连接情况如下所示:

  对应的,在MyTinyCnn的测试程序中给出了对应的定义:

  (5)window_size_保存了当前卷积层卷积核的尺寸,直接由用户指定即可。

  OK,这篇博客着重分析了convolutional_layer类中相关的成员变量和构造函数等信息,在下一篇博客中我们将着重对其中的成员函数进行分析,具体说明各个成员变量之间的初始化方式方法。

  三、注意事项

  1、类型别名问题

  在tiny_cnn中,作者通过typedef关键字定义了若干类型别名,位于util.h文件中:

  因此在分析代码的过程中若是遇到这些类型别名,只需知道其真实的类型即可。

  2、代码截图问题

  在这系列的博客中,我所分析的很多代码都是通过截图的方式来获得,这样做的原因有两个,一是这份tiny_cnn的工程文件大家都可以从网上下载得到,无需再粘贴源码;二是通过截图的方式能够方便对我想要强调的部分进行标记突出,便于大家理解,希望大家习惯这种代码截图的方式。不过这种方式也有一个缺点,就是会导致博文的图片过多,内容过长,大家勉强接受吧。



如果觉得这篇文章对您有所启发,欢迎关注我的公众号,我会尽可能积极和大家交流,谢谢。


这篇关于C++卷积神经网络实例:tiny_cnn代码详解(4)——convolutional_layer类结构信息之成员变量与构造函数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1115497

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

mac中资源库在哪? macOS资源库文件夹详解

《mac中资源库在哪?macOS资源库文件夹详解》经常使用Mac电脑的用户会发现,找不到Mac电脑的资源库,我们怎么打开资源库并使用呢?下面我们就来看看macOS资源库文件夹详解... 在 MACOS 系统中,「资源库」文件夹是用来存放操作系统和 App 设置的核心位置。虽然平时我们很少直接跟它打交道,但了

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

C#实现获取电脑中的端口号和硬件信息

《C#实现获取电脑中的端口号和硬件信息》这篇文章主要为大家详细介绍了C#实现获取电脑中的端口号和硬件信息的相关方法,文中的示例代码讲解详细,有需要的小伙伴可以参考一下... 我们经常在使用一个串口软件的时候,发现软件中的端口号并不是普通的COM1,而是带有硬件信息的。那么如果我们使用C#编写软件时候,如

Rust 数据类型详解

《Rust数据类型详解》本文介绍了Rust编程语言中的标量类型和复合类型,标量类型包括整数、浮点数、布尔和字符,而复合类型则包括元组和数组,标量类型用于表示单个值,具有不同的表示和范围,本文介绍的非... 目录一、标量类型(Scalar Types)1. 整数类型(Integer Types)1.1 整数字

Java操作ElasticSearch的实例详解

《Java操作ElasticSearch的实例详解》Elasticsearch是一个分布式的搜索和分析引擎,广泛用于全文搜索、日志分析等场景,本文将介绍如何在Java应用中使用Elastics... 目录简介环境准备1. 安装 Elasticsearch2. 添加依赖连接 Elasticsearch1. 创

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如