深度学习tracking学习笔记(1):Visual Tracking with Fully Convolutional Networks

2024-06-11 04:32

本文主要是介绍深度学习tracking学习笔记(1):Visual Tracking with Fully Convolutional Networks,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

reference:http://blog.csdn.net/carrierlxksuper/article/details/48918297

两个属性

1)不同层上的CNN特征可以针对不同的tracking问题。越top层的特征越抽象,并且具有语义信息这些特征的优势在于区分不同类别,同时对于形变和遮挡robust(下图a)。但是他们的缺点是无法区别类内的物体,比如不同人(下图b)。而底层的特征更多的是局部特征,可以帮助将目标从背景中分离出来(下图b)。但是无法处理目标外表剧烈变化(下图a)。于是在tracking中作者将两个特征根据干扰的情况,实时切换两种特征。

三个观察以及三个方面的贡献:

作者提到CNN网络在tracking的三个observations是非常重要的,因为这个启发了作者如何将imageNet pretrained CNN应用到visual tracking上去。同时作者cvpr2016的文章仍然是这个思路的延续[1].

下面说一下三个observations:

1.Although the receptive field 1 of CNN feature maps is large, the activated feature maps are sparse and localized. The activated regions are highly correlated to the regions of semantic objects . 意思就是说CNN的feature map来定位目标位置是可行的,这个是基础

2.Many CNN feature maps are noisy or unrelated for the task of discriminating a particular target from its background. 意思是feature map虽然有用,但是不是所有的都有用,有的是噪声或者冗余的,因此需要有个选择机制

3.Different layers encode different types of features. Higher layers capture semantic concepts on object categories, whereas lower layers encode more discriminative features to capture intra class variations. 意思是不同层feature map(conv4和conv5)具有不同的特性,要针对tracking出现的不同情况,利用不同的feature maps.

对应的三个贡献如下:

1) 分析了从大规模图像分类中学到的CNN特征,找出适合于visual tracking的一些属性。也就是不同的computer vision tasks需要 不同的特征。

2)作者提出了一种新的tracking的方法,同时考虑两个不同卷积层的特征输出,使他们相互补充来处理剧烈的外观变化和区分目标本身

3)设计了一种方法来自动选择区分性的feature maps,同时忽略掉另外一个以及噪声。

整体框架:



解释如下:

第一步,对于给定的target,对VGG网络的conv4-3和conv5-3层执行feature map selection,目的是选出最相关的feature maps,具体原因就是构建一个L1范数的正则化目标函数。

第二步,在conv5-3的feature maps基础上,构造一个通用网络GNet,用来捕捉目标的类别信息

第三步,在conv4-3的feature maps基础上,构造一个特定网络SNet,用来将目标从背景中区分出来。

第四步,利用第一帧图像来初始化GNet和SNet,但是两个网络采用不用的更新方法

第五步, 对于新的一帧图像,感兴趣区域(ROI)集中在上一帧的目标位置,包含目标和背景上下文信息,通过全卷积网络传递。

第六步,GNet和SNet网络各自产生一个前景heat map。于是对下一帧目标位置的预测就基于这两个热图。

第七步,干扰项检测用来决定采用上一步产生的哪一个热图,从而决定最后目标的位置。

reference:
http://blog.csdn.net/cv_family_z/article/details/50748236(可参考多篇文章)
简而言之就是:

1.对conv5-3和conv4-3进行特组图筛选; 
2.广义网络GNet根据conv5-3筛选建立; 
3.针对性网络SNet根据conv4-3筛选建立; 
4.SNet,GNet使用第一帧初始化并进行目标热度图回归。 
5.对于新的一帧,上次位置的ROI抠取并送到全卷积网。 
6.SNet,GNet 生成两个热度图,distractor选择策略决定哪个图使用。

特征图筛选 
sel-CNN筛选conv4-3,conv5-3。最小化目标热度图与预测热度图的损失使用BP学习模型参数,根据特征图对损失函数的影响选择特征图: 
Lsel=||M̂ M||2

特征图变化带来的损失变化为: 
这里写图片描述

特征图中某个特征的显著性为: 
这里写图片描述

特征图的显著性为所有元素显著性的和: 
Sk=x,ys(x,y,k)

位置预测 
目标定位首先在GNet上进行,当前帧的位置由上一帧位置,使用高斯模型预测: 
这里写图片描述

为了避免相似物体干扰,当目标外与目标内置信度比值超过一定阈值时,选择SNet预测最终位置: 
这里写图片描述

实验结果对比:

这里写图片描述

一些细节

值得一提的是作者采用了很多细节的技术,这些对于提升效果很有帮助。

比如对于模型的更新,作者将目标漂移以及热图匹配同时考虑在内。

参考文献

[1] Lijun Wang, Wanli Ouyang, Wanli Ouyang, Xiaogang Wang, and Huchuan Lu. "STCT: Sequentially Training Convolutional Networks for Visual Tracking", In Proc. CVPR 2016.

这篇关于深度学习tracking学习笔记(1):Visual Tracking with Fully Convolutional Networks的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1050198

相关文章

深度解析Java DTO(最新推荐)

《深度解析JavaDTO(最新推荐)》DTO(DataTransferObject)是一种用于在不同层(如Controller层、Service层)之间传输数据的对象设计模式,其核心目的是封装数据,... 目录一、什么是DTO?DTO的核心特点:二、为什么需要DTO?(对比Entity)三、实际应用场景解析

深度解析Java项目中包和包之间的联系

《深度解析Java项目中包和包之间的联系》文章浏览阅读850次,点赞13次,收藏8次。本文详细介绍了Java分层架构中的几个关键包:DTO、Controller、Service和Mapper。_jav... 目录前言一、各大包1.DTO1.1、DTO的核心用途1.2. DTO与实体类(Entity)的区别1

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

深度解析Spring Boot拦截器Interceptor与过滤器Filter的区别与实战指南

《深度解析SpringBoot拦截器Interceptor与过滤器Filter的区别与实战指南》本文深度解析SpringBoot中拦截器与过滤器的区别,涵盖执行顺序、依赖关系、异常处理等核心差异,并... 目录Spring Boot拦截器(Interceptor)与过滤器(Filter)深度解析:区别、实现

深度解析Spring AOP @Aspect 原理、实战与最佳实践教程

《深度解析SpringAOP@Aspect原理、实战与最佳实践教程》文章系统讲解了SpringAOP核心概念、实现方式及原理,涵盖横切关注点分离、代理机制(JDK/CGLIB)、切入点类型、性能... 目录1. @ASPect 核心概念1.1 AOP 编程范式1.2 @Aspect 关键特性2. 完整代码实

SpringBoot开发中十大常见陷阱深度解析与避坑指南

《SpringBoot开发中十大常见陷阱深度解析与避坑指南》在SpringBoot的开发过程中,即使是经验丰富的开发者也难免会遇到各种棘手的问题,本文将针对SpringBoot开发中十大常见的“坑... 目录引言一、配置总出错?是不是同时用了.properties和.yml?二、换个位置配置就失效?搞清楚加

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio