Noise Conditional Score Networks 简单总结

2024-08-23 15:20

本文主要是介绍Noise Conditional Score Networks 简单总结,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Noise Conditional Score Networks

Score

S c o r e = ∇ x l o g p ( x ) (1) Score = \nabla_xlog~{p(x)} \tag{1} Score=xlog p(x)(1)

Score 是论文中的一个定义,表示概率密度 p ( x ) p(x) p(x)的梯度,沿着概率密度的梯度向前走,会走到概率密度最高的点。

郎之万动力学采样

x ~ t = x ~ t − 1 + ϵ 2 ∇ x ~ log ⁡ p ( x ~ t − 1 ) + ϵ z t (2) \tilde{x}_t = \tilde{x}_{t-1} + \frac{\epsilon}{2} \nabla_{\tilde{x}} \log p(\tilde{x}_{t-1}) + \sqrt{\epsilon} z_t \tag{2} x~t=x~t1+2ϵx~logp(x~t1)+ϵ zt(2)

z t z_t zt表示高斯噪声, ϵ \epsilon ϵ表示步长,这个公式表示沿着Score向前走,会走到概率密度最高的点,也就是真实的数据分布

Score learning

要想从公式(2)得到真实的数据分布,关键是要学习Score。
L = 1 2 E P data ( x ) [ ∥ s θ ( x ) − ∇ x log ⁡ p ( x ) ∥ 2 2 ] (3) L = \frac{1}{2} \mathbb{E}_{P_{\text{data}}(x)} \left[\left\| s_{\theta}(x) - \nabla_{x} \log p(x) \right\|_2^2 \right] \tag{3} L=21EPdata(x)[sθ(x)xlogp(x)22](3)

直接通过公式(3)学习存在1个问题:

数据密度分布存在低密度区域,对应的样本少, s θ ( x ) s_{\theta}(x) sθ(x)学习不充分,在这些样本点上不能得到足够准确的梯度分数。

通过在真实数据中引入微小的高斯噪声来模拟密度低的样本点,使 s θ ( x ) s_{\theta}(x) sθ(x)学习充分。刚开始的噪声大,后面的噪声小

Noise Conditional Score learning

L = 1 2 E P data ( x ) E x ~ ∼ N ( x ; σ 2 I ) [ ∥ s θ ( x ~ ; σ ) + x ~ − x σ 2 ∥ 2 2 ] (4) L = \frac{1}{2} \mathbb{E}_{P_{\text{data}}(x)} \mathbb{E}_{\tilde{x} \sim \mathcal{N}(x; \sigma^2 I)} \left[ \left\| s_{\theta}(\tilde{x}; \sigma) + \frac{\tilde{x} - x}{\sigma^2} \right\|_2^2 \right] \tag{4} L=21EPdata(x)Ex~N(x;σ2I)[ sθ(x~;σ)+σ2x~x 22](4)

加噪的目的是让样本分布的空间扩大,前期加噪越强,分布空间越大。到后期,加噪小,几乎等于真实样本分布。Score也会越来越准确

这篇文章是一个简单总结,详细的推导 可以看这篇文章和这篇文章。

补充知识:

郎之万动力学[^1]用随机微分方程描述粒子的运动,粒子运动的方向由当前位置的能量密度函数的梯度来指导(粒子会朝着从能量密度高向密度低的地方运动)而且受到微弱的随机噪声的影响。通常表示为
x t + 1 = x t − ϵ ∇ E ( x t ) + 2 ϵ η t x_{t+1} = x_t -\epsilon \nabla E(x_t)+\sqrt{2\epsilon}\eta_t xt+1=xtϵE(xt)+2ϵ ηt
x x x,表示分子的位置, E ( x ) E(x) E(x)表示分子的能量密度函数, ϵ \epsilon ϵ表示步长, η \eta η表示高斯噪声, t t t表示当前时刻。

参考:

[^1] 郎之万动力学

[^2] NCSN视频讲解

文章信息

发表时间:2019,发表地点:NuerPIS,作者:Song, Yang,机构:Stanford.

原文:Generative Modeling by Estimating Gradients of the Data Distribution

原发表网站引用模板:

@inproceedings{NEURIPS2019_3001ef25,author = {Song, Yang and Ermon, Stefano},booktitle = {Advances in Neural Information Processing Systems},editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},pages = {},publisher = {Curran Associates, Inc.},title = {Generative Modeling by Estimating Gradients of the Data Distribution},url = {https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf},volume = {32},year = {2019}
}

这篇关于Noise Conditional Score Networks 简单总结的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1099757

相关文章

Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式

《Java通过驱动包(jar包)连接MySQL数据库的步骤总结及验证方式》本文详细介绍如何使用Java通过JDBC连接MySQL数据库,包括下载驱动、配置Eclipse环境、检测数据库连接等关键步骤,... 目录一、下载驱动包二、放jar包三、检测数据库连接JavaJava 如何使用 JDBC 连接 mys

JavaSE正则表达式用法总结大全

《JavaSE正则表达式用法总结大全》正则表达式就是由一些特定的字符组成,代表的是一个规则,:本文主要介绍JavaSE正则表达式用法的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录常用的正则表达式匹配符正则表China编程达式常用的类Pattern类Matcher类PatternSynta

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

基于Python实现一个简单的题库与在线考试系统

《基于Python实现一个简单的题库与在线考试系统》在当今信息化教育时代,在线学习与考试系统已成为教育技术领域的重要组成部分,本文就来介绍一下如何使用Python和PyQt5框架开发一个名为白泽题库系... 目录概述功能特点界面展示系统架构设计类结构图Excel题库填写格式模板题库题目填写格式表核心数据结构

Nginx Location映射规则总结归纳与最佳实践

《NginxLocation映射规则总结归纳与最佳实践》Nginx的location指令是配置请求路由的核心机制,其匹配规则直接影响请求的处理流程,下面给大家介绍NginxLocation映射规则... 目录一、Location匹配规则与优先级1. 匹配模式2. 优先级顺序3. 匹配示例二、Proxy_pa

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

C/C++ chrono简单使用场景示例详解

《C/C++chrono简单使用场景示例详解》:本文主要介绍C/C++chrono简单使用场景示例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友... 目录chrono使用场景举例1 输出格式化字符串chrono使用场景China编程举例1 输出格式化字符串示

MySQL基本查询示例总结

《MySQL基本查询示例总结》:本文主要介绍MySQL基本查询示例总结,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Create插入替换Retrieve(读取)select(确定列)where条件(确定行)null查询order by语句li

windows和Linux安装Jmeter与简单使用方式

《windows和Linux安装Jmeter与简单使用方式》:本文主要介绍windows和Linux安装Jmeter与简单使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录Windows和linux安装Jmeter与简单使用一、下载安装包二、JDK安装1.windows设

Linux区分SSD和机械硬盘的方法总结

《Linux区分SSD和机械硬盘的方法总结》在Linux系统管理中,了解存储设备的类型和特性是至关重要的,不同的存储介质(如固态硬盘SSD和机械硬盘HDD)在性能、可靠性和适用场景上有着显著差异,本文... 目录一、lsblk 命令简介基本用法二、识别磁盘类型的关键参数:ROTA查询 ROTA 参数ROTA