LLMs:《A Decoder-Only Foundation Model For Time-Series Forecasting》的翻译与解读 导读:本文提出了一种名为TimesFM的时序基础模型,用于零样本学习模式下的时序预测任务。 背景痛点:近年来,深度学习模型在有充足训练数据的情况下已成为时序预测的主流方法,但这些方法通常需要独立在每个数据集上训练。同时,自然语言处理领域的大规模预训练
Latent Diffusion Transformer for Probabilistic Time Series Forecasting 摘要:多元时间序列的概率预测是一项极具挑战性但又实用的任务。本研究提出将高维多元时间序列预测浓缩为潜在空间时间序列生成问题,以提高每个时间戳的表达能力并使预测更易于管理。为了解决现有工作难以扩展到高维多元时间序列的问题,我们提出了一种称为潜在扩散变换器(L
本篇文章希望对demand forecasting涉及的技术进行框架性的整理。首先参考的是供应链及库存相关的著作,一般其中都会有关于forecasting的一章。 References Waters, D. (2003). Inventory control and management 2nd. John Wiley & Sons. (偏OM)Axsäter, S. (2015). Inve
主要解决长期跟踪问题 研究动机:在更长的时间范围内对未来轨迹进行推理 Introduction 首先说明,目前方法已经在短期预测、可见物体跟踪方向上取得成功。 用数据+图说明,长遮挡时,跟踪成功率(ID recall率)显著降低(问题引入) (读一下这篇引用 Donald B Reid. An algorithm for tracking multiple targets. In Tra
How to Save an ARIMA Time Series Forecasting Model in Python 原文作者:Jason Brownlee 原文地址:https://machinelearningmastery.com/save-arima-time-series-forecasting-model-python/ 译者微博:@从流域到海域 译者博客:blog.csd
Lag-Llama: Towards Foundation Models for Time Series Forecasting 文章内容: 时间序列预测任务,单变量预测单变量,基于Llama大模型,在zero-shot场景下模型表现优异。创新点,引入滞后特征作为协变量来进行预测。 获得不同频率的lag,来自glunoTS库里面的源码 def _make_lags(middle: int
太阳能逐时概率预报 概率预测方法没看懂,图文基本无参考 随机森林(RF)。需要在RF中设置三个参数,数字树木- B(森林大小),M -预测因子的数量 Three parameters are required to be set in RF, the number of trees - B (forest size), m - the number of predictors out o
DeepAR:Probabilistic forecasting with autoregressive recurrent network 一般的时间序列预测方法是做点预测,即预测未来某个时间点的具体值。但对于一些具体业务比如预测销量来说预测一个概率区间更加易于决策。DeepAR是一个做概率预测的方法,同时也可以做点预测。 首先简单介绍一下时间序列和常见的处理方法 一、方法介绍 Deep