How to Save an ARIMA Time Series Forecasting Model in Python (如何在Python中保存ARIMA时间序列预测模型)

本文主要是介绍How to Save an ARIMA Time Series Forecasting Model in Python (如何在Python中保存ARIMA时间序列预测模型),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

How to Save an ARIMA Time Series Forecasting Model in Python

原文作者:Jason Brownlee
原文地址:https://machinelearningmastery.com/save-arima-time-series-forecasting-model-python/
译者微博:@从流域到海域
译者博客:blog.csdn.net/solo95

如何在Python中保存ARIMA时间序列预测模型

自回归积分滑动平均模型(Autoregressive Integrated Moving Average Mode, ARIMA)是一个流行的时间序列分析和预测的线性模型。

statsmodels库中提供了Python中所使用ARIMA的实现。ARIMA模型可以保存到一个文件中,以便以后用于对新数据进行预测。statsmodels库的当前版本中有一个bug,会阻止保存的模型被加载。

在本教程中,您将了解如何诊断和解决此问题。

让我们开始吧。

如何在Python中保存ARIMA时间序列预测模型
照片由Les Chatfield提供,保留一些权利。

日均女性出生数据集

首先,我们来看一个标准的时间序列数据集,我们可以用它来理解有关statsmodels ARIMA实现的问题。

这个“日均女性出生”数据集描述了1959年加利福尼亚州每天的女性出生人数。

计数单位是一,365天都进行了观察。数据集的来源归功于Newton(1988)。

您可以了解更多信息并从DataMarket网站下载数据集。

下载数据集并将其放在当前工作目录中,文件命名为“ daily-total-female-births.csv ”。

下面的代码片段将加载和绘制数据集。

from pandas import Series
from matplotlib import pyplot
series = Series.from_csv('daily-total-female-births.csv', header=0)
series.plot()
pyplot.show()

运行示例将数据集加载为Pandas系列,然后显示数据的线图。

日均女性出生总数图

Python环境

请确认您使用的是最新版本的statsmodels库。

你可以通过运行下面的脚本来进行确认:

import statsmodels
print('statsmodels: %s' % statsmodels.__version__)

运行脚本应该产生一个显示statsmodels 0.6或0.6.1的结果。

statsmodels: 0.6.1 

您可以使用Python 2或3。

更新:我可以确认故障仍存在于statsmodels 0.8中并导致下列错误消息出现:

AttributeError: 'ARIMA' object has no attribute 'dates' 

ARIMA模型保存bug

我们可以很容易地在“日均女性出生”数据集上训练一个ARIMA模型。

下面的代码片段在数据集上的训练出一个ARIMA(1,1,1)模型。

model.fit()函数返回一个ARIMAResults对象,我们可以在这个对象上调用save()保存到文件模型并且之后可以使用load()来加载它。

from pandas import Series
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.tsa.arima_model import ARIMAResults# load data
series = Series.from_csv('daily-total-female-births.csv', header=0)# prepare data
X = series.values
X = X.astype('float32')# fit model
model = ARIMA(X, order=(1,1,1))
model_fit = model.fit()# save model
model_fit.save('model.pkl')# load model
loaded = ARIMAResults.load('model.pkl')

运行本例将训练出模型并将其保存到文件中,而不会出现问题。

但当您尝试从文件加载模型时,会报告一个错误。

Traceback (most recent call last):File "...", line 16, in <module>loaded = ARIMAResults.load('model.pkl')File ".../site-packages/statsmodels/base/model.py", line 1529, in loadreturn load_pickle(fname)File ".../site-packages/statsmodels/iolib/smpickle.py", line 41, in load_picklereturn cPickle.load(fin)
TypeError: __new__() takes at least 3 arguments (1 given)

特别的,注意下面这一行:

TypeError: __new__() takes at least 3 arguments (1 given)

之前的步骤都没出错,那么我们如何解决这个问题呢?

ARIMA模型保存Bug解决方法

Zae Myung Kim在2016年9月发现了这个错误并报告了错误。

你可以在这里读到所有和它有关的信息:

  • BUG: Implemented getnewargs() method for unpickling

这个错误是因为pickle所需要的一个函数(用于序列化Python对象的库)在statsmodels中没有定义。

在保存之前,必须在ARIMA模型中定义函数__getnewargs__,以定义构造对象所需的参数。

我们可以解决这个问题。修复涉及两件事情:

  1. 定义一个适用于ARIMA对象的__getnewargs__函数的实现 。
  2. 将这个新函数添加到ARIMA。

谢天谢地,Zae Myung Kim在他的bug报告中提供了一个函数的例子,所以我们可以直接使用它:

def __getnewargs__(self):return ((self.endog),(self.k_lags, self.k_diff, self.k_ma)

Python允许我们对一个对象施加猴补丁操作,即使是像statsmodels这样的库。
(猴补丁(英语:Monkey patch),参见维基百科,有相应中文条目,译者注)

我们可以使用赋值在现有的对象上定义一个新的函数。

我们可以对ARIMA对象上的__getnewargs__函数做如下操作:

ARIMA.__getnewargs__ = __getnewargs__

下面列出了使用猴补丁在Python中加载和保存ARIMA模型的完整示例:

from pandas import Series
from statsmodels.tsa.arima_model import ARIMA
from statsmodels.tsa.arima_model import ARIMAResults# monkey patch around bug in ARIMA class
def __getnewargs__(self):return ((self.endog),(self.k_lags, self.k_diff, self.k_ma))
ARIMA.__getnewargs__ = __getnewargs__# load data
series = Series.from_csv('daily-total-female-births.csv', header=0)# prepare data
X = series.values
X = X.astype('float32')# fit model
model = ARIMA(X, order=(1,1,1))
model_fit = model.fit()# save model
model_fit.save('model.pkl')# load model
loaded = ARIMAResults.load('model.pkl')

现在运行示例就可以成功加载模型,而不会出错。

概要

在这篇文章中,您了解了如何解决statsmodels ARIMA实现时的一个错误,该错误阻止了您将ARIMA模型保存到文件或从文件中加载ARIMA模型。

你学到了如何编写一个猴补丁来解决这个bug,以及如何证明它确实已经修复了。

这篇关于How to Save an ARIMA Time Series Forecasting Model in Python (如何在Python中保存ARIMA时间序列预测模型)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/623344

相关文章

使用Python删除Excel中的行列和单元格示例详解

《使用Python删除Excel中的行列和单元格示例详解》在处理Excel数据时,删除不需要的行、列或单元格是一项常见且必要的操作,本文将使用Python脚本实现对Excel表格的高效自动化处理,感兴... 目录开发环境准备使用 python 删除 Excphpel 表格中的行删除特定行删除空白行删除含指定

Python通用唯一标识符模块uuid使用案例详解

《Python通用唯一标识符模块uuid使用案例详解》Pythonuuid模块用于生成128位全局唯一标识符,支持UUID1-5版本,适用于分布式系统、数据库主键等场景,需注意隐私、碰撞概率及存储优... 目录简介核心功能1. UUID版本2. UUID属性3. 命名空间使用场景1. 生成唯一标识符2. 数

Python办公自动化实战之打造智能邮件发送工具

《Python办公自动化实战之打造智能邮件发送工具》在数字化办公场景中,邮件自动化是提升工作效率的关键技能,本文将演示如何使用Python的smtplib和email库构建一个支持图文混排,多附件,多... 目录前言一、基础配置:搭建邮件发送框架1.1 邮箱服务准备1.2 核心库导入1.3 基础发送函数二、

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中反转字符串的常见方法小结

《Python中反转字符串的常见方法小结》在Python中,字符串对象没有内置的反转方法,然而,在实际开发中,我们经常会遇到需要反转字符串的场景,比如处理回文字符串、文本加密等,因此,掌握如何在Pyt... 目录python中反转字符串的方法技术背景实现步骤1. 使用切片2. 使用 reversed() 函

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核