diffusion model 整理 DDPM: 前向一步到位,从数据集里的图片加噪声,根据随机到的 t t t 决定混合的比例,反向要慢慢迭代,DDPM是用了1000步迭代。模型的输入是带噪声图和 t,t 先生成embedding后,用通道和的方式加到每一层中间去: 训练过程是对每个样本分配一个随机的t,采样一个高斯噪声 ϵ \epsilon ϵ,然后根据 t 对图片和噪声进行混合,将加噪
遇到一个问题是自己创建了新的Detect检测头,但是在导出模型时,想要修改输出格式,在yolo中可以通过if self.export:来修改网络的返回值格式 当使用model.export()导出时,理论上会自动将export设置为True 但是在实际中发现export=false,于是通过调试发现在ultralytics/engine/exporter.py中 for m in model