强化学习实践(一):Model Based 环境准备

2024-09-02 23:44

本文主要是介绍强化学习实践(一):Model Based 环境准备,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

强化学习实践(一):Model Based 环境准备

  • 代码
  • 项目地址

代码

这里是Model Based的环境构建,原型是赵老师课上的Grid World

import numpy as npfrom typing import Tuple
from environment.utils import Utils
from environment.enums import RewardType
from environment.enums import TrajItemsclass Env:# 动作: 不动, 上, 下, 左, 右actions = [[0, 0], [-1, 0], [1, 0], [0, -1], [0, 1]]action_mapper = np.array([np.array(action) for action in actions])def __init__(self, size: int = 5, forbid: list = None, target_state: list = None, start_state: list = None):"""环境动作,状态,奖励,环境模型:param size: 地图大小"""self.size = size# 初始状态与目标状态self.start_state = start_stateself.target_state = target_state# 禁止区域self.forbid = forbid# 动作空间self.action_space_size = len(self.actions)self.action_space = np.arange(self.action_space_size)# 状态空间: 每个格子, 左到右, 上到下拉成一维的self.state_space_size = self.size * self.sizeself.state_space = np.arange(self.state_space_size)# 奖励设定: 禁止区域扣10分,到达终点0分, 走路-1但因为gamma的存在, 路径越长, 奖励越低self.reward_space = np.array([-1, 0, -10, -10])self.reward_space_size = 4# 环境模型: 任意的s跟a对应的p(r|s,a)与p(s'|s,a)self.rewards_model = Noneself.states_model = Noneself.init_model()# 轨迹空间大小self.trajectory_space_size = len(TrajItems.__members__)# 交互相关self.state = Noneself.done = Falseself.info = Nonedef init_model(self) -> None:"""初始化环境模型p(r|s,a) p(s''|s,a):return: None"""states_model_shape = (self.state_space_size, self.action_space_size, self.state_space_size)rewards_model_shape = (self.state_space_size, self.action_space_size, self.reward_space_size)self.states_model = np.zeros(shape=states_model_shape, dtype=float)self.rewards_model = np.zeros(shape=rewards_model_shape, dtype=float)for state in self.state_space:for action in self.action_space:next_state_pos, inside = self.next_state_pos(state, action)if not inside:reward_type = RewardType.OUTSIDEelse:if Utils.arr_equal(next_state_pos, self.target_state):reward_type = RewardType.TARGETelif Utils.arr_contains(self.forbid, next_state_pos):reward_type = RewardType.FORBIDelse:reward_type = RewardType.NORMAL# 前状态state采取当前动作action转移到next_state的概率为1self.states_model[state, action, Utils.pos2index(*next_state_pos, self.size)] = 1# 当前状态state采取当前动作action获得该种奖励类型reward_type的概率为1self.rewards_model[state, action, reward_type.value] = 1def next_state_pos(self, state: int, action: int) -> Tuple[list, bool]:"""在当前状态根据动作获取下一个状态:param state: 当前状态:param action: 当前动作:return: 下一个状态(越界返回当前状态)的坐标; 执行当前动作后是否还在地图内"""pos = np.array(Utils.index2pos(state, self.size))next_pos = pos + self.action_mapper[action]inside = bool((0 <= next_pos[0] <= self.size - 1) and (0 <= next_pos[1] <= self.size - 1))next_state_pos = [*next_pos] if inside else [*pos]return next_state_pos, insidedef episode(self, policy: np.ndarray, state: int, action: int, steps: int) -> np.ndarray:"""根据当前策略从当前状态以及当前动作出发, 生成一个trajectory:param policy: 当前策略:param state: 当前状态:param action: 当前动作:param steps: 轨迹长度:return: 轨迹"""# 存的是state, action, reward, next_state, next_action --> sarsatrajectory = np.zeros(shape=(steps, self.trajectory_space_size), dtype=float)next_state, next_action = state, actionfor step in range(steps):state, action = next_state, next_action# 获取概率为1的奖励的具体值reward_type = np.where(self.rewards_model[state, action] == 1)reward = self.reward_space[reward_type].item()next_state_pos, _ = self.next_state_pos(state, action)next_state = Utils.pos2index(*next_state_pos, self.size)next_action = np.random.choice(self.action_space, p=policy[next_state])trajectory[step] = np.array([state, action, reward, next_state, next_action])return trajectorydef reset(self) -> int:self.done = Falseself.state = Utils.pos2index(*self.start_state, self.size)return self.statedef step(self, action: int) -> Tuple[int, float, bool]:"""这里的环境根据动作直接从环境模型中获取对应的奖励, 然后再计算下一个状态, 再判断是否结束:param action: 当前执行的动作:return: 下一个状态, 当前状态执行当前动作的即时奖励, 是否到达目标格子(是否终止)"""reward_type = np.where(self.rewards_model[self.state, action] == 1)reward = self.reward_space[reward_type].item()next_state_pos, _ = self.next_state_pos(self.state, action)next_state = Utils.pos2index(*next_state_pos, self.size)self.state = next_stateif self.state == Utils.pos2index(*self.target_state, self.size):self.done = Truereturn self.state, reward, self.done

项目地址

RL_Algorithms(正在逐步更新多智能体的算法,STAR HOPE(^ - ^)

这篇关于强化学习实践(一):Model Based 环境准备的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1131415

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

基于MySQL Binlog的Elasticsearch数据同步实践

一、为什么要做 随着马蜂窝的逐渐发展,我们的业务数据越来越多,单纯使用 MySQL 已经不能满足我们的数据查询需求,例如对于商品、订单等数据的多维度检索。 使用 Elasticsearch 存储业务数据可以很好的解决我们业务中的搜索需求。而数据进行异构存储后,随之而来的就是数据同步的问题。 二、现有方法及问题 对于数据同步,我们目前的解决方案是建立数据中间表。把需要检索的业务数据,统一放到一张M

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

阿里开源语音识别SenseVoiceWindows环境部署

SenseVoice介绍 SenseVoice 专注于高精度多语言语音识别、情感辨识和音频事件检测多语言识别: 采用超过 40 万小时数据训练,支持超过 50 种语言,识别效果上优于 Whisper 模型。富文本识别:具备优秀的情感识别,能够在测试数据上达到和超过目前最佳情感识别模型的效果。支持声音事件检测能力,支持音乐、掌声、笑声、哭声、咳嗽、喷嚏等多种常见人机交互事件进行检测。高效推

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

安装nodejs环境

本文介绍了如何通过nvm(NodeVersionManager)安装和管理Node.js及npm的不同版本,包括下载安装脚本、检查版本并安装特定版本的方法。 1、安装nvm curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.0/install.sh | bash 2、查看nvm版本 nvm --version 3、安装