2023年小美赛认证杯A题太阳黑子预测(Sunspot Forecasting)思路模型代码解析

本文主要是介绍2023年小美赛认证杯A题太阳黑子预测(Sunspot Forecasting)思路模型代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

2023年小美赛认证杯A题:太阳黑子预测(Sunspot Forecasting)

【请电脑打开本文链接,扫描下方名片中二维码,获取更多资料】

一、问题重述

太阳黑子是太阳光球上的现象,呈暂时性斑点,比周围区域更暗。它们是由磁通量浓度引起的表面温度降低区域,抑制对流现象。太阳黑子通常出现在活跃区域内,通常是相反磁极的一对。它们的数量随着约11年的太阳周期而变化。
单个太阳黑子或太阳黑子群可能持续几天到几个月,但最终会衰减。太阳黑子在太阳表面运动时会扩张和收缩,直径范围从16千米(10英里)[1]到160,000千米(100,000英里)。一些较大的太阳黑子甚至可以在地球上不使用望远镜的情况下可见[2]。它们可能以相对速度,或者初次出现时的适当运动速度为几百米每秒。
太阳周期通常持续约11年,变化范围从略低于10年到略高于12年。每个周期中太阳黑子活动最强烈的时期被称为太阳最大值,而最低活动时期被称为太阳最小值。这段时期也影响其他大部分太阳活动,并与太阳磁场的变化以这个周期改变极性相关。
太阳黑子数量也在较长时期内变化。例如,在1900年至1958年被称为现代最大值的时期,太阳黑子计数的太阳最大值趋势上升;在随后的60年中,趋势主要是下降的[3]。总体而言,太阳在过去8000多年里最后一次活跃是在现代最大值时期[4]。
由于太阳黑子与其他太阳活动的相关性,它们可以用于帮助预测太空天气、电离层状态以及与短波无线电传播或卫星通信相关的条件。许多基于时间序列分析、谱分析和神经网络的模型已被用于预测太阳黑子活动,但通常结果不佳。这可能与大多数预测模型在数据层面上是现象学的事实有关。尽管我们通常知道太阳活动周期的长度,但这个周期并不完全稳定,活动的最大强度随时间变化,峰值的时间和持续时间很难准确预测。
我们需要预测太阳黑子,通常我们需要将结果在月度基础上进行平均。因此,要求您和您的团队制定合理的数学模型,以尽可能可信地预测太阳黑子。相关的观测数据可以在许多天文台以及空间科学研究组织处公开获取,包括太阳黑子的历史数量、太阳黑子面积以及可能相关的其他指标的观测。请参阅例如(但不限于)https://www.sidc.be/SILSO/datafiles/ 和 http://solarcyclescience.com/activeregions.html
任务:

  1. 请预测当前和下一个太阳周期的开始和结束;
  2. 请预测下一个太阳周期的开始时间和持续时间;
  3. 预测当前和下一个太阳周期的太阳黑子数量和面积,并在您的论文中解释您模型的可靠性。

21631233-9ace-41e9-a7ea-e97389dc5d55.jpeg

二、思路分析

问题一思路分析

1. 数据收集和理解:

  • 收集历史太阳黑子数据,包括数量、日期等。你可以从提到的数据源中获取,如https://www.sidc.be/SILSO/datafiles/ 和 http://solarcyclescience.com/activeregions.html。
  • 理解数据的结构、周期性以及可能的趋势。

2. 数据预处理:

  • 处理缺失值、异常值等。
  • 进行时间序列的平稳性检验,如果数据不平稳,可能需要进行差分。
  • 对数据进行标准化,确保不同特征的尺度一致。

3. 数据可视化:

  • 绘制太阳黑子数量随时间的折线图,以观察趋势和周期性。
  • 检查是否存在季节性变化,例如通过绘制季节性分解图。

4. 模型选择:

  • 根据数据的特点选择合适的模型,可以尝试ARIMA、SARIMA、回归模型、支持向量机、随机森林、RNN、LSTM等。
    • 时间序列分析: 由于太阳活动具有周期性,可以使用时间序列分析来探索太阳黑子数量随时间的变化趋势。常见的时间序列方法包括ARIMA(自回归积分滑动平均)、SARIMA(季节性ARIMA)等。
    • 周期性模型: 由于太阳活动具有明显的周期性,可以考虑使用周期性模型,如傅里叶变换,来捕捉周期性的特征。
    • 机器学习模型: 使用机器学习模型进行预测,可以考虑使用回归模型,支持向量机(SVM),决策树,随机森林等。这些模型能够学习数据中的复杂关系,尤其是在存在非线性关系时。
    • 深度学习模型: 对于复杂的非线性关系,可以考虑使用深度学习模型,如循环神经网络(RNN)或长短时记忆网络(LSTM),这些模型对序列数据的建模能力较强。
  • 考虑使用集成模型或调参优化模型。

5. 模型训练:

  • 将数据划分为训练集和测试集。
  • 对选定的模型进行训练。在时间序列预测中,确保在训练过程中使用滚动窗口的方式,逐步向前预测。

6. 模型评估:

  • 使用测试集进行模型评估,考虑预测准确性、均方根误差(RMSE)等指标。
  • 对模型进行调整和优化,以提高预测性能。

7. 结果解释和报告:

  • 解释模型的预测结果,包括当前太阳周期和下一个太阳周期的开始和结束。
  • 报告模型的可靠性和泛化性能。

8. 持续监测和更新:

  • 定期更新模型,利用新的数据来提高预测准确性。
  • 持续监测太阳活动和黑子数量,以确保模型的实用性。
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from statsmodels.tsa.arima.model import ARIMA
from statsmodels.tsa.stattools import adfuller# 读取数据(示例数据,实际应使用你的数据)
# 这里假设你的数据包含两列:'Date' 和 'Sunspot_Count'
data = pd.read_csv('your_data.csv')
data['Date'] = pd.to_datetime(data['Date'])
data = data.set_index('Date')# 探索性数据分析
plt.plot(data['Sunspot_Count'])
plt.title('Sunspot Count Over Time')
plt.xlabel('Date')
plt.ylabel('Sunspot Count')
plt.show()# 平稳性检验
result = adfuller(data['Sunspot_Count'])
print(f'ADF Statistic: {result[0]}')
print(f'p-value: {result[1]}')# 如果 p-value 大于显著性水平,进行差分操作
if result[1] > 0.05:data_diff = data['Sunspot_Count'].diff().dropna()
else:data_diff = data['Sunspot_Count']# 拟合 ARIMA 模型
model = ARIMA(data_diff, order=(1, 1, 1))
fit_model = model.fit()# 预测未来值
future_steps = 12  # 根据需要调整
forecast = fit_model.get_forecast(steps=future_steps)# 获取预测结果
forecast_index = pd.date_range(data.index[-1], periods=future_steps + 1, freq='M')[1:]
forecast_values = forecast.predicted_mean.values# 可视化预测结果
plt.plot(data['Sunspot_Count'], label='Observed')
plt.plot(forecast_index, forecast_values, color='red', label='Forecast')
plt.title('Sunspot Count Prediction with ARIMA Model')
plt.xlabel('Date')
plt.ylabel('Sunspot Count')
plt.legend()
plt.show()

问题二思路分析

1. 数据收集和理解:

  • 收集历史太阳周期数据,包括开始时间、持续时间,以及太阳黑子的数量和面积。确保数据的完整性和准确性。
  • 理解数据的结构、周期性,以及可能的相关因素。

2. 特征工程:

  • 考虑引入可能影响太阳活动的其他因素,如太阳风、磁暴等。这可能需要领域专业知识。
  • 进行特征选择和处理,确保选用的特征能够有效地预测目标。

3. 数据预处理:

  • 处理缺失值、异常值等。
  • 对数据进行标准化,确保不同特征的尺度一致。

4. 数据可视化:

  • 绘制太阳周期的开始时间、持续时间,以及太阳黑子的数量和面积随时间的趋势图。
  • 观察可能的季节性和周期性变化。

5. 模型选择:

  • 根据数据的特点选择合适的模型,可以尝试线性回归、多元线性回归、决策树、随机森林、RNN、LSTM等。
    • 时间序列分析: 使用历史太阳黑子数量和面积的时间序列数据,探索其变化趋势和周期性。
    • 特征工程: 考虑引入可能影响太阳活动的其他因素,如太阳风、磁暴等,进行特征工程。
    • 机器学习模型: 使用回归模型来预测太阳周期的开始时间和持续时间,以及太阳黑子的数量和面积。
    • 深度学习模型: 对于复杂的非线性关系,可以考虑使用深度学习模型,如循环神经网络(RNN)或长短时记忆网络(LSTM)。
    • 集成模型: 考虑使用集成模型,如随机森林,以综合多个模型的预测结果,提高整体性能。
    • 解释性模型: 选择具有解释性的模型,以便更好地理解模型如何做出预测。
  • 考虑使用集成模型或调参优化模型。

6. 模型训练:

  • 将数据划分为训练集和测试集。
  • 对选定的模型进行训练。在时间序列预测中,确保在训练过程中使用滚动窗口的方式,逐步向前预测。

7. 模型评估:

  • 使用测试集进行模型评估,考虑预测准确性、均方根误差(RMSE)等指标。
  • 对模型进行调整和优化,以提高预测性能。

8. 结果解释和报告:

  • 解释模型的预测结果,包括下一个太阳周期的开始时间、持续时间,太阳黑子的数量和面积。
  • 报告模型的可靠性和泛化性能。

9. 可靠性评估:

  • 讨论模型的可靠性,包括模型的置信水平、不确定性等。
  • 解释模型的局限性,确保对结果的解释具备合理性。

10. 持续监测和更新:

  • 定期更新模型,考虑新的数据,以确保模型的实用性和准确性。
  • 持续监测太阳活动和黑子数量,以保持模型的及时性。
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from datetime import datetime, timedelta# 读取数据(示例数据,实际应使用你的数据)
# 这里假设你的数据包含四列:'Start_Date', 'Duration', 'Sunspot_Count', 'Sunspot_Area'
data = pd.read_csv('your_data.csv')
data['Start_Date'] = pd.to_datetime(data['Start_Date'])# 特征工程:计算太阳周期的持续时间(可能需要更多特征工程)
data['Next_Start_Date'] = data['Start_Date'] + pd.to_timedelta(data['Duration'], unit='D')# 划分特征和目标变量
features = data[['Start_Date', 'Duration']]
target_count = data['Sunspot_Count']
target_area = data['Sunspot_Area']# 划分训练集和测试集
features_train, features_test, target_count_train, target_count_test, target_area_train, target_area_test = \train_test_split(features, target_count, target_area, test_size=0.2, random_state=42)# 定义线性回归模型
model_count = LinearRegression()
model_area = LinearRegression()# 训练模型
model_count.fit(features_train, target_count_train)
model_area.fit(features_train, target_area_train)# 预测未来值(假设预测下一个周期)
next_start_date = data['Next_Start_Date'].max() + pd.to_timedelta(data['Duration'].mean(), unit='D')
next_start_date = pd.DataFrame({'Start_Date': [next_start_date]})
next_duration = pd.DataFrame({'Duration': [data['Duration'].mean()]})predicted_count = model_count.predict(next_start_date.join(next_duration))
predicted_area = model_area.predict(next_start_date.join(next_duration))# 输出预测结果
print(f'Predicted Sunspot Count: {predicted_count[0]}')
print(f'Predicted Sunspot Area: {predicted_area[0]}')

问题三思路分析

1. 数据收集和理解:

  • 收集太阳黑子数量和面积的历史数据,同时收集可能影响太阳黑子的关键特征数据。确保数据的完整性和准确性。
  • 理解数据的结构、周期性,以及可能的相关因素。

2. 特征工程:

  • 确定影响太阳黑子数量和面积的关键特征。这可能需要领域专业知识。
  • 进行特征选择和处理,确保选用的特征能够有效地预测目标。

3. 数据预处理:

  • 处理缺失值、异常值等。
  • 对数据进行标准化,确保不同特征的尺度一致。

4. 数据可视化:

  • 绘制太阳黑子数量和面积随时间的趋势图。
  • 观察可能的季节性和周期性变化。

5. 模型选择:

  • 根据数据的特点选择合适的模型,可以尝试线性回归、多元线性回归、决策树回归、随机森林回归、深度学习模型等。
    • 特征工程: 确定影响太阳黑子数量和面积的关键特征,可能包括太阳风、磁场强度、活动区域等。
    • 时序模型: 考虑使用时间序列模型,因为太阳黑子的数量和面积可能随时间变化,并具有一定的周期性。
    • 回归模型: 使用回归模型进行数量和面积的预测,考虑到这是一个连续型的预测问题。
    • 深度学习模型: 对于非线性和复杂的关系,可以尝试使用深度学习模型,如循环神经网络(RNN)或长短时记忆网络(LSTM)。
    • 集成模型: 结合多个模型的预测结果,可以提高整体模型的稳健性。
    • 解释性模型: 使用易于解释的模型,以便更好地理解太阳黑子数量和面积的预测。
  • 考虑使用集成模型或调参优化模型。

6. 模型训练:

  • 将数据划分为训练集和测试集。
  • 对选定的模型进行训练。在时间序列预测中,确保在训练过程中使用滚动窗口的方式,逐步向前预测。

7. 模型评估:

  • 使用测试集进行模型评估,考虑预测准确性、均方根误差(RMSE)等指标。
  • 对模型进行调整和优化,以提高预测性能。

8. 结果解释和报告:

  • 解释模型的预测结果,包括太阳黑子数量和面积的预测。
  • 报告模型的可靠性和泛化性能。

9. 可靠性评估:

  • 讨论模型的可靠性,包括模型的置信水平、不确定性等。
  • 解释模型的局限性,确保对结果的解释具备合理性。

10. 持续监测和更新:

  • 定期更新模型,考虑新的数据,以确保模型的实用性和准确性。
  • 持续监测太阳黑子数量和面积,以保持模型的及时性。
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_squared_error# 读取数据(示例数据,实际应使用你的数据)
# 这里假设你的数据包含两列:'Sunspot_Count' 和 'Sunspot_Area'
data = pd.read_csv('your_data.csv')# 划分特征和目标变量
features = data.drop(['Sunspot_Count', 'Sunspot_Area'], axis=1)  # 假设有其他特征
target_count = data['Sunspot_Count']
target_area = data['Sunspot_Area']# 划分训练集和测试集
features_train, features_test, target_count_train, target_count_test, target_area_train, target_area_test = \train_test_split(features, target_count, target_area, test_size=0.2, random_state=42)# 定义随机森林回归模型
model_count = RandomForestRegressor(n_estimators=100, random_state=42)
model_area = RandomForestRegressor(n_estimators=100, random_state=42)# 训练模型
model_count.fit(features_train, target_count_train)
model_area.fit(features_train, target_area_train)# 预测未来值(假设预测下一个周期)
next_data_point = features_test.iloc[0].values.reshape(1, -1)  # 使用测试集中的一个数据点进行预测predicted_count = model_count.predict(next_data_point)
predicted_area = model_area.predict(next_data_point)# 输出预测结果
print(f'Predicted Sunspot Count: {predicted_count[0]}')
print(f'Predicted Sunspot Area: {predicted_area[0]}')# 模型评估(可选)
test_predictions_count = model_count.predict(features_test)
test_predictions_area = model_area.predict(features_test)mse_count = mean_squared_error(target_count_test, test_predictions_count)
mse_area = mean_squared_error(target_area_test, test_predictions_area)print(f'Mean Squared Error (Count): {mse_count}')
print(f'Mean Squared Error (Area): {mse_area}')

【请电脑打开本文链接,扫描下方名片中二维码,获取更多资料】

这篇关于2023年小美赛认证杯A题太阳黑子预测(Sunspot Forecasting)思路模型代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/441959

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

浅析Spring Security认证过程

类图 为了方便理解Spring Security认证流程,特意画了如下的类图,包含相关的核心认证类 概述 核心验证器 AuthenticationManager 该对象提供了认证方法的入口,接收一个Authentiaton对象作为参数; public interface AuthenticationManager {Authentication authenticate(Authenti

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

活用c4d官方开发文档查询代码

当你问AI助手比如豆包,如何用python禁止掉xpresso标签时候,它会提示到 这时候要用到两个东西。https://developers.maxon.net/论坛搜索和开发文档 比如这里我就在官方找到正确的id描述 然后我就把参数标签换过来

Retrieval-based-Voice-Conversion-WebUI模型构建指南

一、模型介绍 Retrieval-based-Voice-Conversion-WebUI(简称 RVC)模型是一个基于 VITS(Variational Inference with adversarial learning for end-to-end Text-to-Speech)的简单易用的语音转换框架。 具有以下特点 简单易用:RVC 模型通过简单易用的网页界面,使得用户无需深入了

poj 1258 Agri-Net(最小生成树模板代码)

感觉用这题来当模板更适合。 题意就是给你邻接矩阵求最小生成树啦。~ prim代码:效率很高。172k...0ms。 #include<stdio.h>#include<algorithm>using namespace std;const int MaxN = 101;const int INF = 0x3f3f3f3f;int g[MaxN][MaxN];int n

透彻!驯服大型语言模型(LLMs)的五种方法,及具体方法选择思路

引言 随着时间的发展,大型语言模型不再停留在演示阶段而是逐步面向生产系统的应用,随着人们期望的不断增加,目标也发生了巨大的变化。在短短的几个月的时间里,人们对大模型的认识已经从对其zero-shot能力感到惊讶,转变为考虑改进模型质量、提高模型可用性。 「大语言模型(LLMs)其实就是利用高容量的模型架构(例如Transformer)对海量的、多种多样的数据分布进行建模得到,它包含了大量的先验

图神经网络模型介绍(1)

我们将图神经网络分为基于谱域的模型和基于空域的模型,并按照发展顺序详解每个类别中的重要模型。 1.1基于谱域的图神经网络         谱域上的图卷积在图学习迈向深度学习的发展历程中起到了关键的作用。本节主要介绍三个具有代表性的谱域图神经网络:谱图卷积网络、切比雪夫网络和图卷积网络。 (1)谱图卷积网络 卷积定理:函数卷积的傅里叶变换是函数傅里叶变换的乘积,即F{f*g}