Python Transformers库(NLP处理库)案例代码讲解

2025-04-25 17:50

本文主要是介绍Python Transformers库(NLP处理库)案例代码讲解,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对...

以下是一份关于 transformers 库的全面讲解,包含基础知识、高级用法、案例代码及学习路径。内容经过组织,适合不同阶段的学习者。

一、基础知识

1. Transformers 库简介

  • 作用:提供预训练模型(如 BERT、GPT、RoBERTa)和工具,用于 NLP 任务(文本分类、翻译、生成等)。
  • 核心组件
    • Tokenizer:文本分词与编码
    • Model:神经网络模型架构
    • Pipeline:快速推理的封装接口

2. 安装与环境配置

pip install transformers torch datasets

3. 快速上手示例

from transformers import pipeline
# 使用情感分析流水线
classifier = pipeline("sentiment-analysis")
result = classifier("I love programming with Transformers!")
print(result)  # [{'label': 'POSITIVE', 'score': 0.9998}]

二、核心模块详解

1. Tokenizer(分词器)

from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
text = "Hello, world!"
encoded = tokenizer(text, 
                    padding=True, 
                    truncation=True, 
                    return_tensors="pt")  # 返回PyTorch张量
print(encoded)
# {'input_ids': tensor([[101, 7592, 1010, 2088, 999, 102]]), 
#  'attention_mask': tensor([[1, 1, 1, 1, 1, 1]])}

2. Model(模型加载)

from transformers import AutoModel
model = AutoModel.from_pretrained("bert-base-uncased")
outputs = model(**encoded)  # 前向传播
last_hidden_states = outputs.last_hidden_state

三、高级用法

1. 自定义模型训练(PyTorch示例)

from transformers import BertForSequenceClassification, Trainer, TrainingArguments
from datasets import load_dataset
# 加载数据集
dataset = load_dataset("imdb")
tokenized_datasets = dataset.map(
    lambda x: tokenizer(x["text"], padding=True, truncation=True),
    BATched=True
)
# 定义模型
model = BertForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2)
# 训练参数配置
training_args = TrainingArguments(
    output_dir="./results",
    num_train_epochs=3,
    per_device_train_batch_size=8,
    evaLuation_strategy="epoch"
)
# 训练器配置
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=tokenized_datasets["train"],
    eval_dataset=tokenized_datasets["test"]
)
# 开始训练
trainer.train()

2. 模型保存与加载

model.save_pretrained("./my_model")
tokenizer.save_pretrained("./my_model")
# 加载自定义模型
new_model = AutoModel.from_pretrained("./my_model")

四、深入进阶

1. 注意力机制可视化

from transformers import BertModel, BertTokenizer
import torch
model = BertModel.from_pretrained("bert-base-uncased", output_attentions=True)
inputs = tokenizer("The cat sat on the mat", return_tensors="pt")
outputs = model(**inputs)
# 提取第0层的注意力权重
attention = outputs.attentions[0][0]
print(attention.shape)  # [num_heads, seq_len, seq_len]

2. 混合精度训练

from transformers import TrainingArguments
training_args = TrainingArguments(
    fp16=True,  # 启用混合精度
    ...
)

五、完整案例:命名实体识别(NER)

from transformers import pipeline
# 加载NER流水线
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
text = "Apple was founded by Steve Jobs in Cupertino."
results = ner_pipeline(text)
# 结果可视化
for entity in results:
    print(f"{entity['word']} -> {entity['entity']} (confidence: {entity['score']:.2f})")

六、学习路径建议

入门阶段

  • 官方文档:huggingface.co/docs/transformers
  • 学习 pipeline 和基础模型使用

中级阶段

  • 掌握自定义训练流程
  • 理解模型架构(Transformer、BERT原理)

高级阶段

  • 模型蒸馏与量化
  • 自定义模型架构开发
  • 大模型微调技巧

七、资源推荐

必读论文

  • 《Attention Is All You Need》(Transformer 原始论文)
  • 《BERT: Pre-training of Deep Bidirectional Transformers》

实践项目

  • 文本摘要生成
  • 多语言翻译系统
  • 对话机器人开发

社区资源

  • Hugging Face Model Hub
  • Kaggle NLP 竞赛案例

八、高级训练技巧

1. 学习率调度与梯度裁剪

在训练过程中动态调整学习率,防止梯度爆炸:

from transformers import TrainingArguments
training_args = TrainingArguments(
    output_dir="./results",
    learning_rate=2e-5,
    weight_decay=0.01,
    warmup_steps=500,          # 学习率预热步数
    gradient_accumulation_steps=2,  # 梯度累积(节省显存)
    gradient_clipping=1.0,     # 梯度裁剪阈值
    ...
)

2. 自定义损失函数(PyTorch示例)

import torch
from transformers import BertForSequenceClassification
class CustomModel(BertForSequenceClassification):
    def __init__(self, config):
        super().__init__(config)
    def forward(self, input_ids, attention_mask, labels=None):
        outputs = super().forward(input_ids, attention_mask)
        logits = outputs.logits
        if labels is not None:
            loss_fct = torch.nn.CrossEntropyLoss(weight=torch.tensor([1.0, 2.0]))  # 类别权重
            loss = loss_fct(logits.view(-1, 2), labels.view(-1))
            return {"loss": loss, "logits": logits}
        return outputs

九、复杂任务实战

1. 文本生成(GPT-2示例)

from transformers import GPT2LMHeadModel, GPT2Tokenizer
tokenizer = GPT2Tokenizer.from_pretrained("gpt2")
model = GPT2LMHeadModel.from_pretrained("gpt2")
prompt = "In a world where AI dominates,"
input_ids = tokenizer.encode(prompt, return_tensors="pt")
# 生成文本(配置生成参数)
output = model.generate(
    input_ids, 
    max_length=100, 
    temperature=0.7,        # 控制随机性(低值更确定)
    top_k=50,               # 限制候选词数量
    num_return_sequences=3  # 生成3个不同结果
)
for seq in output:
    print(tokenizer.decode(seq, skip_special_tokens=True))

2. 问答系统(BERT-based)

from transformers import pipeline
qa_pipeline = pipeline("question-answering", model="deepset/roberta-base-squad2")
context = """
Hugging Face is a www.chinasem.cncompany based in New York City. 
Its Transformers library is widely used in NLP.
"""
question = "Where is Hugging Face located?"
result = qa_pipeline(question=question, context=context)
print(f"Answer: {result['answer']} (score: {result['score']:.2f})")
# Answer: New York City (score: 0.92)

十、模型优化与部署

1. 模型量化(减小推理延迟)

from transformers import BertModel, AutoTokenizer
import torch
model = BertModel.from_pretrained("bert-base-uncased")
quantized_model = torch.quantization.quantize_dynamic(
    model, 
    {torch.nn.Linear},   # 量化所有线性层
    dtype=torch.qReauSlgtint8
)
# 量化后推理速度提升2-4倍,模型体积减少约75%

2. ONNX 格式导出(生产部署)

from transformers import BertTokenizer, BertForSequenceClassification
from torch.onnx import export
model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# 示例输入
dummy_input = tokenizer("This is a test", return_tensors="pt")
# 导出为ONNX
export(
    model,
    (dummy_input["input_ids"], dummy_input["attention_mask"]),
    "model.onnx",
    opset_version=13,
    input_names=["input_ids", "attention_mask"],
    output_names=["logits"],
    dynamic_axes={"input_ids": {0: "batch"}, "attention_mask": {0: "batch"}}
)

十一、调试与性能分析

1. 检查显存占用

import torch
# 在训练循环中插入显存监控
print(f"Allocated: {torch.cuda.memory_allocated() / 1e9:.2f} GB")
print(f"Cached: {torch.cuda.memory_reserved() / 1e9:.2f} GB")

2. 使用 PyTorch Profiler

from torch.profiler import profile, record_function, ProfilerActivity
with profile(activities=[ProfilerActivity.CUDA], record_shapes=True) as prof:
    outputs = model(**inputs)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))

十二、多语言与跨模态

1. http://www.chinasem.cn多语言翻译(mBART)

from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
tokenizer = MBart50TokenizerFast.from_pretrained("facebook/mbart-large-50-many-to-many-mmt")
# 中文转英文
tokenizer.src_lang = "zh_CN"
text = "欢迎使用Transformers库"
encoded = tokenizer(text, return_tensors="pt")
generated_tokens = model.generate(**encoded, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
print(tokenizer.batch_decode(generated_tokens, skip_special_tokens=True))
# ['Welcome to the Transformers library']

2. 图文多模态(CLIP)

from PIL import Image
from transformers import CLIPProcessor, CLIPModel
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
image = Image.open("cat.jpg")
text = ["a photo of a cat", "a photo of a dog"]
inputs = processor(text=text, images=image, return_tensors="pt", padding=True)
outputs = model(**inputs)
# 计算图文相似度
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)  # 概率分布

十三、学习路径补充

1. 深入理解 Transformer 架构

实现一个简化版 Transformer:

import torch.nn as nn
class Transformerblock(nn.Module):
    def __init__(self, d_model=512, nhead=8):
        super().__init__()
        self.attention = nn.MultiheadAttention(d_model, nhead)
        self.linear = nn.Linear(d_model, d_model)
        self.norm = nn.LayerNorm(d_model)
    def forward(self, x):
        attn_output, _ = self.attention(x, x, x)
        x = x + attn_output
        x = self.norm(x)
        x = x + self.linear(x)
        return x

2. 参与开源项目

  • 贡献 Hugging Face 代码库
  • 复现最新论文模型(如 LLaMA、BLOOM)

十四、常见问题解答

1. OOM(显存不足)错误处理

解决方案

  • 减小 batch_size
  • 启用梯度累积 (gradient_accumulation_steps)
  • 使用混合精度 (fp16=True)
  • 清理缓存:torch.cuda.empty_cache()

2. 中文分词特殊处理

from transformers import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("bert-base-chinese")
# 手动添加特殊词汇
tokenizer.add_tokens(["【特殊词】"])
# 调整模型嵌入层
model.resize_token_embeddings(len(tokenizer)) 

以下继续扩展关于 transformers 库的深度应用内容,涵盖更多实际场景、前沿技术及工业级实践方案。

十五、前沿技术实践

1. 大语言模型(LLM)微调(以 LLaMA 为例)

from transformers import LlamaForCausalLM, LlamaTokenizer, TrainingArguments
# 加载模型和分词器(需申请权限)
model = LlamaForCausalLM.from_pretrained("decapoda-research/llama-7b-hf")
tokenizer = LlamaTokenizer.from_pretrained("decapoda-research/llama-7b-hf")
# 低秩适配(LoRA)微调
from peft import get_peft_model, LoraConfig
lora_config = LoraConfig(
    r=8,  # 低秩维度
    lora_alpha=32,
    target_modules=["q_proj", "v_proj"],  # 仅微调部分模块
    lora_dropout=0.05,
    bias="none"
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()  # 显示可训练参数占比(通常 <1%)
# 继续配置训练参数...

2. 强化学习与人类反馈(RLHF)

# 使用 TRL 库进行 RLHF 训练
from trl import PPOTrainer, AutoModelForCausalLMWithValueHead
model = AutoModelForCausalLMWithValueHead.from_pretrained("gpt2")
ppo_trainer = PPOTrainer(
    model=model,
    config=training_args,
    dataset=dataset,
    tokenizer=tokenizer
)
# 定义奖励模型
for epoch in range(3):
    for batch in ppo_trainer.dataloader:
        # 生成响应
        response_tensors = model.generate(batch["input_ids"])
        # 计算奖励(需自定义奖励函数)
        rewards = calculate_rewards(response_tensors, batch)
        # PPO 优化步骤
        ppo_trainer.step(
            response_tensors,
            rewards,
            batch["attention_mask"]
        )

十六、工业级应用方案

1. 分布式训练(多GPU/TPU)

from transformers import TrainingArguments
# 配置分布式训练
training_args = TrainingArguments(
    per_device_train_batch_size=4,
    gradient_accumulation_steps=8,
    fp16=True,
    tpu_num_cores=8,  # 使用TPU时指定核心数
    dataloader_num_workers=4,
    deepspeed="./configs/deepspeed_config.json"  # 使用DeepSpeed优化
)
# DeepSpeed 配置文件示例(ds_config.json):
{
  "fp16": {
    "enabled": true
  },
  "optimizer": {
    "type": "AdamW",
    "params": {
      "lr": 3e-5
    }
  },
  "zero_optimization": {
    "stage": 3  # 启用ZeRO-3优化
  }
}

2. 流式推理服务(FastAPI + Transformers)

from fastapi import FastAPI
from pydantic import BaseModel
from transformers import pipeline
app = FastAPI()
generator = pipeline("text-generation", model="gpt2")
class Request(BaseModel):
    text: str
    max_length: int = 100
@app.post("/generate")
async def generate_text(request: Request):
    result = generator(request.text, max_length=request.max_length)
    return {"generated_text": result[0]["generated_text"]}
# 启动服务:uvicorn main:app --port 8000

十七、特殊场景处理

1. 长文本处理(滑动窗口)

from transformers import AutoTokenizer, AutoModelForQuestionAnswering
tokenizer = AutoTokenizer.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
model = AutoModelForQuestionAnswering.from_pretrained("bert-large-uncased-whole-word-masking-finetuned-squad")
def process_long_text(context, question, max_length=384, stride=128):
    # 分块处理长文本
    inputs = tokenizer(
        question,
        context,
        max_length=max_length,
        truncation="only_second",
        stride=stride,
        return_overflowing_tokens=True,
        return_offsets_mapping=True
    )
    # 对各块推理并合并结果
    best_score = 0
    best_answer = ""
    for i in range(len(inputs["input_ids"])):
        outputs = model(**{k: torch.tensor([v[i]]) for k, v in inputs.items()})
        answer_start = torch.argmax(outputs.start_logits)
        answer_end = torch.argmax(outputs.end_logits) + 1
        score = (outputs.start_logits[answer_start] + outputs.end_logits[answer_end-1]).item()
        if score > best_score:
            best_score = score
            best_answer = tokenizer.decode(inputs["input_ids"][i][answer_start:answer_end])
    return best_answer

2. 低资源语言处理

# 使用 XLM-RoBERTa 进行跨语言迁移
from transformers import XLMRobertaTokenizer, XLMRobertaForSequenceClassification
tokenizer = XLMRobertaTokenizer.from_pretrained("xlm-roberta-base")
model = XLMRobertaForSequenceClassification.from_pretrained("xlm-roberta-base")
# 通过少量样本微调(代码与BERT训练类似)

十八、模型解释性

1. 特征重要性分析(使用 Captum)

from captum.attr import LayerIntegratedGradients
from transformers import BertForSequenceClassification
model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
def forward_func(input_ids, attention_mask):
    return model(input_ids, attention_mask).logits
lig = LayerIntegratedGradients(forward_func, model.bert.embeddings)
# 计算输入词重要性
attributions, delta = lig.attribute(
    inputs=input_ids,
    baselines=tokenizer.pad_token_id * torch.ones_like(input_ids),
    additional_forward_args=attention_mask,
    return_convergence_delta=True
)
# 可视化结果
import matplotlib.pyplot as plt
plt.bar(range(len(attributions[0])), attributions[0].detach().numpy())
plt.xticks(ticks=range(len(tokens)), labels=tokens, rotation=90)
plt.show()

十九、生态系统整合

1. 与 spaCy 集成

import spacy
from spacy_transformers import TransformersLanguage, TransformersWordPiecer
# 创建spacy管道
nlp = TransformersLanguage(trf_name="bert-base-uncased")
# 自定义组件
@spacy.registry.architectures("CustomClassifier.v1")
def create_classifier(transformer, tok2vec, n_classes):
    return TransformersTextCategorizer(transformer, tok2vec, n_classes)
# 在spacy中直接使用Transformer模型
doc = nlp("This is a text to analyze.")
print(doc._.trf_last_hidden_state.shape)  # [seq_len, hidden_dim]

2. 使用 Gradio 快速构建演示界面

import gradio as gr
from transformers import pipeline
ner_pipeline = pipeline("ner")
def extract_entities(text):
    results = ner_pipeline(text)
    return {"text": text, "entities": [
        {"entity": res["entity"], "start": res["start"], "end": res["end"]}
        for res in results
    ]}
gr.Interface(
    fn=extract_entities,
    inputs=gr.Textbox(lines=5),
    outputs=gr.HighlightedText()
).launch()

二十、持续学习建议

跟踪最新进展

  • 关注 Hugging Face 博客和论文(如 T5、BLOOM、Stable Diffusion)
  • 参与社区活动(Hugging Face 的 Discord 和论坛)

实战项目进阶

  • 构建端到端 NLP 系统(数据清洗 → 模型训练 → 部署监控)
  • 参加 Kaggle 比赛(如 CommonLit Readability Prize)

系统优化方向

  • 模型量化与剪枝
  • 服务端优化(TensorRT 加速、模型并行)
  • 边缘设备部署(ONNX Runtime、Core ML)

以下继续扩展关于 transformers 库的终极实践指南,涵盖生产级优化、前沿模型架构、领域专用方案及伦理考量。

二十一、生产级模型优化

1. 模型剪枝与知识蒸馏

# 使用 nn_pruning 进行结构化剪枝
from transformers import BertForSequenceClassification
from nn_pruning import ModelPruning
model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
pruner = ModelPruning(
    model,
    target_sparsity=0.5,  # 剪枝50%的注意力头
    pattern="block_sparse"  # 结构化剪枝模式
)
# 执行剪枝并微调
pruned_model = pruner.prune()
pruned_model.save_pretrained("./pruned_bert")
# 知识蒸馏(教师→学生模型)
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
teacher = BertForSequenceClassification.from_pretrained("bert-base-uncased")
student = DistilBertForSequenceClassification.from_pretrained("distilbert-base-uncased")
# 使用蒸馏训练器
from transformers import DistillationTrainingArguments, DistillationTrainer
training_args = DistillationTrainingArguments(
    output_dir="./distilled",
    temperature=2.0,  # 软化概率分布
    alpha_ce=0.5,     # 交叉熵损失权重
    alpha_mse=0.5     # 隐藏层MSE损失权重
)
trainer = DistillationTrainer(
    teacher=teacher,
    student=student,
    args=training_args,
    train_dataset=tokenized_datasets["train"],
    tokenizer=tokenizer
)
trainer.train()

2. TensorRT 加速推理

# 转换模型为TensorRT引擎
trtexec --onnx=model.onnx --saveEngine=model.trt --fp16
# python 调用TensorRT引擎
import tensorrt as trt
import pycuda.driver as cuda
runtime = trt.Runtime(trt.Logger(trt.Logger.WARNING))
with open("model.trt", "rb") as f:
    engine = runtime.deserialize_cuda_engine(f.read())
context = engine.create_execution_context()
# 绑定输入输出缓冲区进行推理

二十二、领域专用模型

1. 生物医学NLP(BioBERT)

from transformers import AutoTokenizer, AutoModelForTokenClassification
tokenizer = AutoTokenizer.from_pretrained("dmis-lab/biobert-v1.1")
model = AutoModelForTokenClassification.from_pretrained("dmis-lab/biobert-v1.1")
text = "The patient exhibited EGFR mutations and responded to osimertinib."
inputs = tokenizer(text, return_tensors="pt")
outputs = model(**inputs).logits
# 提取基因实体
predictions = torch.argmax(outputs, dim=2)
print([tokenizer.decode([token]) for token in inputs.input_ids[0]])
print(predictions.tolist())  # BIO标注结果

2. 法律文书解析(Legal-BERT)

# 合同条款分类
from transformers import BertTokenizer, BertForSequenceClassification
tokenizer = BertTokenizer.from_pretrained("nlpaueb/legal-bert-base-uncased")
model = BertForSequenceClassification.from_pretrained("nlpaueb/legal-bert-base-uncased")
clause = "The Parties hereby agree to arbitrate all disputes in accordance with ICC rules."
inputs = tokenizer(clause, return_tensors="pt", truncation=True, padding=True)
outputs = model(**inputs)
predicted_class = torch.argmax(outputs.logits).item()  # 0: 仲裁条款, 1: 保密条款等

二十三、边缘设备部署

1. Core ML 转换(iOS部署)

from transformers import BertForSequenceClassification
import coremltools as ct
model = BertForSequenceClassification.from_pretrained("bert-base-uncased")
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
# 转换模型
traced_model = torch.jit.trace(model, (input_ids, attention_mask))
mlmodel = ct.convert(
    traced_model,
    inputs=[
        ct.TensorType(name="input_ids", shape=input_ids.shape),
        ct.TensorType(name="attention_mask", shape=attention_mask.shape)
    ]
)
mlmodel.save("BeReauSlgtrtSenti.mlmodel")

2. TensorFlow Lite 量化(Android部署)

from transformers import TFBertForSequenceClassification
import tensorflow as tf
model = TFBertForSequenceClassification.from_pretrained("bert-base-uncased")
# 转换为TFLite
converter = tf.lite.TFLiteConverter.from_keras_model(model)
converter.optimizations = [tf.lite.Optimize.DEFAULT]  # 动态范围量化
tflite_model = converter.convert()
with open("model_quant.tflite", "wb") as f:
    f.write(tflite_model)

二十四、伦理与安全

1. 偏见检测与缓解

from transformers import pipeline
from fairness_metrics import demographic_parity
# 检测模型偏见
classifier = pipeline("text-classification", model="bert-base-uncased")
protected_groups = {
    "gender": ["she", "he"],
    "race": ["African", "European"]
}
bias_scores = {}
for category, terms in protected_groups.items():
    texts = [f"{term} is qualified for this position" for term in terms]
    results = classifier(texts)
    bias_scores[category] = demographic_parity(results)

2. 对抗样本防御

from textattack import AttackRecipe
from textattack.models.wrappers import HuggingFaceModelWrapper
model_wrapper = HuggingFaceModelWrapper(model, tokenizer)
attack = AttackRecipe.build("bae")  # BAE攻击方法
# 生成对抗样本
attack_args = textattack.AttackArgs(num_examples=5)
attacker = textattack.Attacker(attack, model_wrapper, attack_args)
attack_results = attacker.attack_dataset(dataset)

二十五、前沿架构探索

1. Sparse Transformer(处理超长序列)

from transformers import LongformerModel
model = LongformerModel.from_pretrained("allenai/longformer-base-4096")
inputs = tokenizer("This is a very long document..."*1000, return_tensors="pt")
outputs = model(**inputs)  # 支持最长4096 tokens

2. 混合专家模型(MoE)

# 使用Switch Transformers
from transformers import SwitchTransformersForConditionalGeneration
model = SwitchTransformersForConditionalGeneration.from_pretrained("google/switch-base-8")
outputs = model.generate(
    input_ids,
    expert_choice_mask=True,  # 追踪专家路由
)
print(outputs.expert_choices)  # 显示每个token使用的专家

二十六、全链路项目模板

"""
端到端文本分类系统架构:
1. 数据采集 → 2. 清洗 → 3. js标注 → 4. 模型训练 → 5. 评估 → 6. 部署 → 7. 监控
"""
# 步骤4的增强训练流程
from transformers import TrainerCallback
class CustomCallback(TrainerCallback):
    def on_log(self, args, state, control, logs=None, **kwargs):
        # 实时记录指标到Prometheus
        prometheus_logger.log_metrics(logs)
# 步骤7的漂移检测
from alibi_detect.cd import MMDDrift
detector = MMDDrift(
    X_train, 
    backend="tensorflow", 
    p_val=0.05
)
drift_preds = detector.predict(X_prod)

二十七、终身学习建议

技术跟踪

  • 订阅 arXiv 的 cs.CL 分类
  • 参与 Hugging Face 社区周会

技能扩展

  • 学习模型量化理论(《Efficient MAChine Learning》)
  • 掌握 CUDA 编程基础

跨界融合

  • 探索 LLM 与知识图谱结合
  • 研究多模态大模型(如 Flamingo、DALL·E 3)

伦理实践

  • 定期进行模型公平性审计
  • 参与 AI for Social Good 项目

到此这篇关于Python Transformers库【NLP处理库】全面讲解的文章就介绍到这了,更多相关Python Transformers库内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于Python Transformers库(NLP处理库)案例代码讲解的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154373

相关文章

一文详解Java异常处理你都了解哪些知识

《一文详解Java异常处理你都了解哪些知识》:本文主要介绍Java异常处理的相关资料,包括异常的分类、捕获和处理异常的语法、常见的异常类型以及自定义异常的实现,文中通过代码介绍的非常详细,需要的朋... 目录前言一、什么是异常二、异常的分类2.1 受检异常2.2 非受检异常三、异常处理的语法3.1 try-

Python正则表达式语法及re模块中的常用函数详解

《Python正则表达式语法及re模块中的常用函数详解》这篇文章主要给大家介绍了关于Python正则表达式语法及re模块中常用函数的相关资料,正则表达式是一种强大的字符串处理工具,可以用于匹配、切分、... 目录概念、作用和步骤语法re模块中的常用函数总结 概念、作用和步骤概念: 本身也是一个字符串,其中

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

Java Response返回值的最佳处理方案

《JavaResponse返回值的最佳处理方案》在开发Web应用程序时,我们经常需要通过HTTP请求从服务器获取响应数据,这些数据可以是JSON、XML、甚至是文件,本篇文章将详细解析Java中处理... 目录摘要概述核心问题:关键技术点:源码解析示例 1:使用HttpURLConnection获取Resp

python实现svg图片转换为png和gif

《python实现svg图片转换为png和gif》这篇文章主要为大家详细介绍了python如何实现将svg图片格式转换为png和gif,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录python实现svg图片转换为png和gifpython实现图片格式之间的相互转换延展:基于Py

Python中的getopt模块用法小结

《Python中的getopt模块用法小结》getopt.getopt()函数是Python中用于解析命令行参数的标准库函数,该函数可以从命令行中提取选项和参数,并对它们进行处理,本文详细介绍了Pyt... 目录getopt模块介绍getopt.getopt函数的介绍getopt模块的常用用法getopt模

Python利用ElementTree实现快速解析XML文件

《Python利用ElementTree实现快速解析XML文件》ElementTree是Python标准库的一部分,而且是Python标准库中用于解析和操作XML数据的模块,下面小编就来和大家详细讲讲... 目录一、XML文件解析到底有多重要二、ElementTree快速入门1. 加载XML的两种方式2.

Python如何精准判断某个进程是否在运行

《Python如何精准判断某个进程是否在运行》这篇文章主要为大家详细介绍了Python如何精准判断某个进程是否在运行,本文为大家整理了3种方法并进行了对比,有需要的小伙伴可以跟随小编一起学习一下... 目录一、为什么需要判断进程是否存在二、方法1:用psutil库(推荐)三、方法2:用os.system调用

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)

《使用Python从PPT文档中提取图片和图片信息(如坐标、宽度和高度等)》PPT是一种高效的信息展示工具,广泛应用于教育、商务和设计等多个领域,PPT文档中常常包含丰富的图片内容,这些图片不仅提升了... 目录一、引言二、环境与工具三、python 提取PPT背景图片3.1 提取幻灯片背景图片3.2 提取