图形学基础笔记III:图形管线中的多边形裁剪算法、Sutherland-Hodgman、Guard Band Clipping

本文主要是介绍图形学基础笔记III:图形管线中的多边形裁剪算法、Sutherland-Hodgman、Guard Band Clipping,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

这个主要讲的是viewport 里的。

从 frustum (根据 fov 视场角 和 aspect ratio 纵横比决定 lrbt,front、near 是由摄像机距离和世界大小决定的)到 viewport 之后,能够看到的就只有投影后的 cuboid 在 viewport 里面的东西了。

问题是这个 clipping 是在 CPU 还是 GPU?实际有多个阶段,从 culling,CPU clipping 到 GPU clipping 和GPU rasterization。

本文尝试讲解这个问题,不过实际显卡和驱动变幻莫测,还需要更多参考资料。


但是有些麻烦的是因为只能处理三角形,如果裁剪了之后变成 polygon 了就要重新划分三角形了。好在三角形切一刀只会变成三角形或者四边形(quadrilateral)。

所以可以用下面的伪代码对整个 cuboid 内的 3D 三角形进行处理。

tiger book 也分析了裁剪实际放在 mvp 之前也可以,除以齐次坐标后也可以,在mvp之后也可以,但是除法之后(世界坐标)对于眼睛附近的地方是不连续的,所以这方面的运动就很难,所以一般在 MVP 后的除法之前做,而超平面也不难表示。对于 mvp 之后的平面方程则是最简单了(因为就是正立方体)。


首先是对直线的裁剪的硬件算法,即 cohen-sutherland 算法。对于多边形的裁剪是基于直线的裁剪的 sutherland-hodgman。一般讲解的是 2D 的情况,实际有 3D 的算法。

这部分算法可能是在 CPU 做的,也可能是在 GPU(看下面的 Guard band clipping 里面就明白了,对于不同的区域而言,有一些必须 CPU 就剪好,有一些可以让 GPU 剪,最后都是看你驱动怎么实现的),而且最新的硬件算法你也不知道是什么,会经过奇特的优化,其中还涉及到插值的问题。

对于一半在 viewport 里面的三角形,其实最简单的做法是 AABB 遍历的时候只访问 viewport 里面的像素就行了,感觉也没什么,关键是你不能剪掉的啊,剪掉了那 vertex 的信息就没了(OpenGL 规定是在 VS 后面进行 clipping),还要重建新的三角形和分割,那还 render 个寂寞。

对于 hardware clipping 来说,实际你还是要进行这部分的数据传输。如果不想数据传输就涉及在 CPU 端做 culling。optimization - At what phase in rendering does clipping occur? - Stack Overflow

当然,上面说的最简单的做法是 AABB 遍历的时候只访问 viewport 里面的像素就行。但是这样实际是要求显卡的实际能用的缓冲区是要大于 viewport 的。如果你的图元连缓冲区都放不下,是不是就一定要做类似 sutherland-hodgman 然后按老虎书说的要看情况拆成两个新的三角形,还要处理边界值(根据被剪掉的顶点插值好属性从而不会丢失)。

Nvidia 和 D3D 有一个叫 guard band clipping 的 culling + clipping 的层次算法,从 CPU 一路到 GPU 的,所以可能 GPU 就没有实现:

Guard Band Clipping in Direct3D (nvidia.cn)


Cohen-Sutherland

  • 平面编码:使用 tbrl 4位编码,如果是在 viewport 的 tbrl 就为 1. 每个位置最多两个 1.
  • 在交点处把线段分为两段。其中一段完全在窗口外,可弃之。然后对另一段重复上述处理。
  • 如上图,实际只需要对直线的端点(其实一直说直线说的是线段)求这个编码,根据不同的情况,然后递归/迭代进行下去:
	// Cohen–Sutherland clipping algorithm clips a line from// P0 = (x0, y0) to P1 = (x1, y1) against a rectangle with// diagonal from (xmin, ymin) to (xmax, ymax).void CohenSutherlandLineClipAndDraw(double x0,double y0,double x1,double y1) {// compute outcodes for P0, P1, and whatever point lies outside the clip// rectangleOutCode outcode0 = ComputeOutCode(x0, y0);OutCode outcode1 = ComputeOutCode(x1, y1);bool accept = false;while (true) {if (!(outcode0 | outcode1)) {// bitwise OR is 0: both points inside window; trivially accept and exit// loopaccept = true, break;} else if (outcode0 & outcode1) {// bitwise AND is not 0: both points share an outside zone (LEFT, RIGHT,// TOP, or BOTTOM), so both must be outside window; exit loop (accept is// false)break;} else {// failed both tests, so calculate the line segment to clip// from an outside point to an intersection with clip edgedouble x, y;// At least one endpoint is outside the clip rectangle; pick it.OutCode outcodeOut = outcode1 > outcode0 ? outcode1 : outcode0;// Now find the intersection point;// use formulas://   slope = (y1 - y0) / (x1 - x0)//   x = x0 + (1 / slope) * (ym - y0), where ym is ymin or ymax//   y = y0 + slope * (xm - x0), where xm is xmin or xmax// No need to worry about divide-by-zero because, in each case, the// outcode bit being tested guarantees the denominator is non-zeroif (outcodeOut & TOP)  // point is above the clip windowx = x0 + (x1 - x0) * (ymax - y0) / (y1 - y0), y = ymax;else if (outcodeOut & BOTTOM)  // point is below the clip windowx = x0 + (x1 - x0) * (ymin - y0) / (y1 - y0), y = ymin;else if (outcodeOut & RIGHT)  // point is to the right of clip windowy = y0 + (y1 - y0) * (xmax - x0) / (x1 - x0), x = xmax;else if (outcodeOut & LEFT)  // point is to the left of clip windowy = y0 + (y1 - y0) * (xmin - x0) / (x1 - x0), x = xmin;// Now we move outside point to intersection point to clip// and get ready for next pass.if (outcodeOut == outcode0)x0 = x, y0 = y, outcode0 = ComputeOutCode(x0, y0);elsex1 = x, y1 = y, outcode1 = ComputeOutCode(x1, y1);}}
}

Sutherland-Hodgman 多边形裁剪算法

  • 关键在于怎么确定凸的凹的那些要不要封闭。
  • 按某个顺序逐边裁剪:

  • 多边形边的分类:把所有边都按逆时针确定起点 S 和终点 P。每次裁剪的时候,viewport 边界裁剪线要做延长,再划分 in out 分区

  • case1 是整条边都在viewport 里面的(通过 Cohen-Sutherland 得知的),只保留终点。
  • case2 是内往外出,保留交点。(起点会由另一个闭合边输出),交点的求法可以用数值解。
  • case3 边在外面,不保留顶点。
  • case4 外面进来,保留交点和终点。
  • 一言:对于相交的, viewport 内的终点,以及交点都要保留

  • 后处理:由于这个算法输出的是点,这里演示了一个凹多边形,所以你怎么把连连起来呢?wiki 说 Note that if the subject polygon was concave at vertices outside the clipping polygon, the new polygon may have coincident (i.e., overlapping) edges – this is acceptable for rendering, but not for other applications such as computing shadows.
  • 所以说必须要做一个后处理,实际你处理不了,只能加一些专家系统的解决一部分问题。不过既然三角形是凸的,所以实际可以不管他(然而我感觉用这个只处理三角形是不是有点浪费?)别的算法也是针对 polygon 的。可能说三角形还能优化。不过注意的是,对于三角形切了之后变成四边形的情况还要割呢。
  • 交点插值:由于与切割线的交点已经不是原来三角形的顶点了,所以 clipping 的过程要求一下新的顶点的重心坐标,把插值后的属性放到新的顶点上取。
  • 切分三角形:这个过程很简单的,只要切完了之后看一下有多少个顶点,如果是 4 个就切一刀,把对应 vertex 的 attributes 都要复制一份。
  • 原理:其实上边这些操作指南一样的东西,是可以用三角形来推导出来的。规定顺时针方向和逆时针方向都行。就是依次遍历三角形的三条边,然后能够依次把要保留(裁剪)的顶点不遗漏不多选地列举出来。其实那几条规则对三角形来说实在是想当然的,可以穷举所有情况,。

 


Homogeneous Clipping

  • 算法论文:p245-blinn.pdf (fabiensanglard.net)
  • 上面这个 Sutherland-Hodgman 算法一看好像只能用在 2D 上,有一定的局限。
  • 但是我们可以考虑把裁剪线扩展为裁剪面,而交点还是交点,只不过变成了 3D 的直线(线段)与平面的交点。
  • 前面提到虎书说到,我们可以在 MVP 之后,做除法之前进行 clipping。这就是齐次坐标裁剪。复习一下为什么要在除法之前进行 clipping 呢,这是因为除法之后(世界坐标)对于眼睛附近的地方是不连续的(复习 MVP 矩阵的推导),所以一般在除法之前做。(记住除法的那个 w 其实在运算过程为了化简其他,用的就是 z 就行了,也就是因为这个 z 的除法引入了反比例函数)。
  • P 矩阵的问题就是这里,回想 games101 讲 transformation II 的矩阵的推导,由于 P 矩阵主要是我们基于 x 和 y 来推导的,z 的这个是凑出来的。所以这下问题就导致最后会出错

  • 但是实际还是大部分可以是正比关系的,只要 n + f 够给力,但是反比例函数的特性,必然有一部分会被弄反。

  • 实际疯狂 google 找到齐次裁剪的关键字之后,也发现了有大佬的漂亮公式文章,这里也附上作为参考,我暂时就不研究具体公式(不过其实和上面 Sutherland-Hodgman 算法的差不多)。计算机图形学补充2:齐次空间裁剪(Homogeneous Space Clipping) - 知乎 (zhihu.com)。需要注意齐次坐标裁剪和 Sutherland-Hodgman 的关系就行。

 


实际显卡驱动中的 culling & clipping

  • Nvidia 的算法说明:Guard Band Clipping in Direct3D (nvidia.cn)
  • 由于显卡的帧缓冲是有限的,为了能够支持更大的世界,实际显卡的帧缓冲是支持比 viewport 的帧缓冲大小大得多的的,这个叫做guard band。但是他仍然是有限的,显卡能够处理的三角形也是必须在有限的空间里的(但是三角形的个数可以轻松上亿甚至十几亿),一半 60 帧的引擎同屏渲染几亿三角形应该不在话下。
  • 所以实际 CPU 传给 GPU 进行光栅化的三角形空间位置也不能超出视口太多然后还要渲染的,这样的结果是显卡自己处理不了这种三角形,因为他无法访问这么大范围的数据。

  • 所以是两阶段裁剪算法:CPU 必须保证所有传送的三角形都在 Guard band 里面。GPU 自己再裁一遍。
  • 上图,A 可以硬件丢弃,B 可以硬件裁剪。D 传送的时候就被丢掉了(驱动做),或者 CPU 可以丢掉。C 就是一个很麻烦的三角形,关键是他还和 viewport 相交了。所以必须要进行软件裁剪(CPU 进行)。

实际对于3D 来说,一些背面三角形没有必要渲染,直接丢掉,这个叫做背向面剔除

 

这篇关于图形学基础笔记III:图形管线中的多边形裁剪算法、Sutherland-Hodgman、Guard Band Clipping的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/970556

相关文章

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

C#基础之委托详解(Delegate)

《C#基础之委托详解(Delegate)》:本文主要介绍C#基础之委托(Delegate),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 委托定义2. 委托实例化3. 多播委托(Multicast Delegates)4. 委托的用途事件处理回调函数LINQ

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

MySQL中my.ini文件的基础配置和优化配置方式

《MySQL中my.ini文件的基础配置和优化配置方式》文章讨论了数据库异步同步的优化思路,包括三个主要方面:幂等性、时序和延迟,作者还分享了MySQL配置文件的优化经验,并鼓励读者提供支持... 目录mysql my.ini文件的配置和优化配置优化思路MySQL配置文件优化总结MySQL my.ini文件

Linux内核之内核裁剪详解

《Linux内核之内核裁剪详解》Linux内核裁剪是通过移除不必要的功能和模块,调整配置参数来优化内核,以满足特定需求,裁剪的方法包括使用配置选项、模块化设计和优化配置参数,图形裁剪工具如makeme... 目录简介一、 裁剪的原因二、裁剪的方法三、图形裁剪工具四、操作说明五、make menuconfig