本文主要是介绍代码随想录算法训练营第四十五天| 70. 爬楼梯 (进阶),322. 零钱兑换 ,279.完全平方数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
题目与题解
70. 爬楼梯 (进阶)
题目链接:70. 爬楼梯 (进阶)
代码随想录题解:70. 爬楼梯 (进阶)
解题思路:
这道题要求每次可以爬1-m层的楼梯,最终爬到n,相当于完全背包问题中,有无限个重量为1-m的物品,每次可以取不同重量的物品,要求最后重量加起来等于n时有多少种排列。
那这题就跟组合总和IV是一样的了,就是完全背包+排列,因此for循环写的时候背包遍历在外侧,物品遍历在内侧,由于是完全背包问题,所以要从前往后遍历,递推公式求数目,那dp[i] += dp[i-j]即可。
import java.util.*;public class Main {public static void main (String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int m = scanner.nextInt();int[] dp = new int[n+1];dp[0] = 1;for (int i = 0; i <= n; i++) {for (int j = 1; j <= m && j <= i; j++) {dp[i] += dp[i - j];}}System.out.println(dp[n]);}
}
看完代码随想录之后的想法
了解套路以后就可以套公式了
遇到的困难
虽然不是特别懂初始化要求、遍历顺序和遍历时究竟是物品在外面还是背包在外面,但是记住公式就能写。
322. 零钱兑换
题目链接:322. 零钱兑换
代码随想录题解:322. 零钱兑换
视频讲解:动态规划之完全背包,装满背包最少的物品件数是多少?| LeetCode:322.零钱兑换_哔哩哔哩_bilibili
解题思路:
硬币数量无限,求固定总和对应的最少硬币数目,实质上就是完全背包问题中的组合问题,不过,相比普通背包问题要求价值最大的物品组合,这里要求最少硬币数目,递推公式里面将用min而非max,所以对初始化有了一定要求,第一次没有写对。
看完代码随想录之后的想法
1. 确定dp数组以及下标的含义
dp[j]:凑足总额为j所需钱币的最少个数为dp[j]
2. 确定递推公式
凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])
所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。
递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);
3.dp数组如何初始化
首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;
考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。
所以下标非0的元素都是应该是最大值。
4.确定遍历顺序
本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。
class Solution {public int coinChange(int[] coins, int amount) {int[] dp = new int[amount+1];Arrays.sort(coins);Arrays.fill(dp, Integer.MAX_VALUE);dp[0] = 0;for (int i = 0; i < coins.length; i++) {for (int j = coins[i]; j <= amount; j++) {if (dp[j - coins[i]] != Integer.MAX_VALUE) {dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);}}}if (dp[amount] == Integer.MAX_VALUE) return -1;return dp[amount];}
}
遇到的困难
一开始其实递推公式想到了,但是初始化碰到了问题。最早是直接将dp[0]等于最大值,结果递推时没有限制dp[j-coins[i]]的大小,直接溢出了,后面就有点摸不着头脑了。还有dp[0]=0也很关键,因为按照定义目标值为0时硬币数就应该是0。
279.完全平方数
题目链接:279.完全平方数
代码随想录题解:279.完全平方数
视频讲解:动态规划之完全背包,换汤不换药!| LeetCode:279.完全平方数_哔哩哔哩_bilibili
解题思路:
这题跟前一题其实是一样一样的,不同点在于coins这个数组由完全平方数[1*1,2*2,3*3.....]代替了。遍历时注意i*i和j都要小于n就可以。
class Solution {public int numSquares(int n) {int[] dp = new int[n+1];Arrays.fill(dp, Integer.MAX_VALUE);dp[0] = 0;for (int i = 1; i*i <= n; i++) {for (int j = i*i; j <= n; j++) {if (dp[j - i*i] != Integer.MAX_VALUE) {dp[j] = Math.min(dp[j], dp[j-i*i] + 1);}}}if (dp[n] == Integer.MAX_VALUE) return 0;else return dp[n];}
}
看完代码随想录之后的想法
这题本质就是:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?
这类求一共有多少组合的问题,先遍历物品或先遍历背包都不影响结果。
遇到的困难
一开始写的外层条件是i<=n,明显效率较低,因为背包内的物品是i*i,其值不能超过n,因此可以多加一点限制,提高效率。
今日收获
做了这么多题,感觉公式慢慢熟悉了,就是不知道碰到新的应用题能不能想到用背包做。
这篇关于代码随想录算法训练营第四十五天| 70. 爬楼梯 (进阶),322. 零钱兑换 ,279.完全平方数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!