代码随想录算法训练营第四十五天| 70. 爬楼梯 (进阶),322. 零钱兑换 ,279.完全平方数

本文主要是介绍代码随想录算法训练营第四十五天| 70. 爬楼梯 (进阶),322. 零钱兑换 ,279.完全平方数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目与题解

70. 爬楼梯 (进阶)

题目链接:70. 爬楼梯 (进阶)

代码随想录题解:70. 爬楼梯 (进阶)

解题思路:

        这道题要求每次可以爬1-m层的楼梯,最终爬到n,相当于完全背包问题中,有无限个重量为1-m的物品,每次可以取不同重量的物品,要求最后重量加起来等于n时有多少种排列。

        那这题就跟组合总和IV是一样的了,就是完全背包+排列,因此for循环写的时候背包遍历在外侧,物品遍历在内侧,由于是完全背包问题,所以要从前往后遍历,递推公式求数目,那dp[i] += dp[i-j]即可。

import java.util.*;public class Main {public static void main (String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int m = scanner.nextInt();int[] dp = new int[n+1];dp[0] = 1;for (int i = 0; i <= n; i++) {for (int j = 1; j <= m && j <= i; j++) {dp[i] += dp[i - j];}}System.out.println(dp[n]);}
}

看完代码随想录之后的想法 

        了解套路以后就可以套公式了

遇到的困难

        虽然不是特别懂初始化要求、遍历顺序和遍历时究竟是物品在外面还是背包在外面,但是记住公式就能写。

322. 零钱兑换 

题目链接:​​​​​​​322. 零钱兑换

代码随想录题解:​​​​​​​322. 零钱兑换

视频讲解:动态规划之完全背包,装满背包最少的物品件数是多少?| LeetCode:322.零钱兑换_哔哩哔哩_bilibili

解题思路:

        硬币数量无限,求固定总和对应的最少硬币数目,实质上就是完全背包问题中的组合问题,不过,相比普通背包问题要求价值最大的物品组合,这里要求最少硬币数目,递推公式里面将用min而非max,所以对初始化有了一定要求,第一次没有写对。

看完代码随想录之后的想法 

        1. 确定dp数组以及下标的含义

dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

        2. 确定递推公式

凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

        3.dp数组如何初始化

首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

        4.确定遍历顺序

本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数

class Solution {public int coinChange(int[] coins, int amount) {int[] dp = new int[amount+1];Arrays.sort(coins);Arrays.fill(dp, Integer.MAX_VALUE);dp[0] = 0;for (int i = 0; i < coins.length; i++) {for (int j = coins[i]; j <= amount; j++) {if (dp[j - coins[i]] != Integer.MAX_VALUE) {dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);}}}if (dp[amount] == Integer.MAX_VALUE) return -1;return dp[amount];}
}

遇到的困难

        一开始其实递推公式想到了,但是初始化碰到了问题。最早是直接将dp[0]等于最大值,结果递推时没有限制dp[j-coins[i]]的大小,直接溢出了,后面就有点摸不着头脑了。还有dp[0]=0也很关键,因为按照定义目标值为0时硬币数就应该是0。

279.完全平方数 

题目链接:​​​​​​​279.完全平方数 

代码随想录题解:279.完全平方数 

视频讲解:动态规划之完全背包,换汤不换药!| LeetCode:279.完全平方数_哔哩哔哩_bilibili

解题思路:

        这题跟前一题其实是一样一样的,不同点在于coins这个数组由完全平方数[1*1,2*2,3*3.....]代替了。遍历时注意i*i和j都要小于n就可以。

class Solution {public int numSquares(int n) {int[] dp = new int[n+1];Arrays.fill(dp, Integer.MAX_VALUE);dp[0] = 0;for (int i = 1; i*i <= n; i++) {for (int j = i*i; j <= n; j++) {if (dp[j - i*i] != Integer.MAX_VALUE) {dp[j] = Math.min(dp[j], dp[j-i*i] + 1);}}}if (dp[n] == Integer.MAX_VALUE) return 0;else return dp[n];}
}

看完代码随想录之后的想法 

        这题本质就是:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

        这类求一共有多少组合的问题,先遍历物品或先遍历背包都不影响结果。

遇到的困难

        一开始写的外层条件是i<=n,明显效率较低,因为背包内的物品是i*i,其值不能超过n,因此可以多加一点限制,提高效率。

今日收获

        做了这么多题,感觉公式慢慢熟悉了,就是不知道碰到新的应用题能不能想到用背包做。

这篇关于代码随想录算法训练营第四十五天| 70. 爬楼梯 (进阶),322. 零钱兑换 ,279.完全平方数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/919279

相关文章

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Java实现自定义table宽高的示例代码

《Java实现自定义table宽高的示例代码》在桌面应用、管理系统乃至报表工具中,表格(JTable)作为最常用的数据展示组件,不仅承载对数据的增删改查,还需要配合布局与视觉需求,而JavaSwing... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

Go语言代码格式化的技巧分享

《Go语言代码格式化的技巧分享》在Go语言的开发过程中,代码格式化是一个看似细微却至关重要的环节,良好的代码格式化不仅能提升代码的可读性,还能促进团队协作,减少因代码风格差异引发的问题,Go在代码格式... 目录一、Go 语言代码格式化的重要性二、Go 语言代码格式化工具:gofmt 与 go fmt(一)

HTML5实现的移动端购物车自动结算功能示例代码

《HTML5实现的移动端购物车自动结算功能示例代码》本文介绍HTML5实现移动端购物车自动结算,通过WebStorage、事件监听、DOM操作等技术,确保实时更新与数据同步,优化性能及无障碍性,提升用... 目录1. 移动端购物车自动结算概述2. 数据存储与状态保存机制2.1 浏览器端的数据存储方式2.1.

基于 HTML5 Canvas 实现图片旋转与下载功能(完整代码展示)

《基于HTML5Canvas实现图片旋转与下载功能(完整代码展示)》本文将深入剖析一段基于HTML5Canvas的代码,该代码实现了图片的旋转(90度和180度)以及旋转后图片的下载... 目录一、引言二、html 结构分析三、css 样式分析四、JavaScript 功能实现一、引言在 Web 开发中,

Python如何去除图片干扰代码示例

《Python如何去除图片干扰代码示例》图片降噪是一个广泛应用于图像处理的技术,可以提高图像质量和相关应用的效果,:本文主要介绍Python如何去除图片干扰的相关资料,文中通过代码介绍的非常详细,... 目录一、噪声去除1. 高斯噪声(像素值正态分布扰动)2. 椒盐噪声(随机黑白像素点)3. 复杂噪声(如伪