代码随想录算法训练营第四十五天| 70. 爬楼梯 (进阶),322. 零钱兑换 ,279.完全平方数

本文主要是介绍代码随想录算法训练营第四十五天| 70. 爬楼梯 (进阶),322. 零钱兑换 ,279.完全平方数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目与题解

70. 爬楼梯 (进阶)

题目链接:70. 爬楼梯 (进阶)

代码随想录题解:70. 爬楼梯 (进阶)

解题思路:

        这道题要求每次可以爬1-m层的楼梯,最终爬到n,相当于完全背包问题中,有无限个重量为1-m的物品,每次可以取不同重量的物品,要求最后重量加起来等于n时有多少种排列。

        那这题就跟组合总和IV是一样的了,就是完全背包+排列,因此for循环写的时候背包遍历在外侧,物品遍历在内侧,由于是完全背包问题,所以要从前往后遍历,递推公式求数目,那dp[i] += dp[i-j]即可。

import java.util.*;public class Main {public static void main (String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int m = scanner.nextInt();int[] dp = new int[n+1];dp[0] = 1;for (int i = 0; i <= n; i++) {for (int j = 1; j <= m && j <= i; j++) {dp[i] += dp[i - j];}}System.out.println(dp[n]);}
}

看完代码随想录之后的想法 

        了解套路以后就可以套公式了

遇到的困难

        虽然不是特别懂初始化要求、遍历顺序和遍历时究竟是物品在外面还是背包在外面,但是记住公式就能写。

322. 零钱兑换 

题目链接:​​​​​​​322. 零钱兑换

代码随想录题解:​​​​​​​322. 零钱兑换

视频讲解:动态规划之完全背包,装满背包最少的物品件数是多少?| LeetCode:322.零钱兑换_哔哩哔哩_bilibili

解题思路:

        硬币数量无限,求固定总和对应的最少硬币数目,实质上就是完全背包问题中的组合问题,不过,相比普通背包问题要求价值最大的物品组合,这里要求最少硬币数目,递推公式里面将用min而非max,所以对初始化有了一定要求,第一次没有写对。

看完代码随想录之后的想法 

        1. 确定dp数组以及下标的含义

dp[j]:凑足总额为j所需钱币的最少个数为dp[j]

        2. 确定递推公式

凑足总额为j - coins[i]的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i]即dp[j - coins[i]] + 1就是dp[j](考虑coins[i])

所以dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的。

递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

        3.dp数组如何初始化

首先凑足总金额为0所需钱币的个数一定是0,那么dp[0] = 0;

考虑到递推公式的特性,dp[j]必须初始化为一个最大的数,否则就会在min(dp[j - coins[i]] + 1, dp[j])比较的过程中被初始值覆盖。

所以下标非0的元素都是应该是最大值。

        4.确定遍历顺序

本题求钱币最小个数,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数

class Solution {public int coinChange(int[] coins, int amount) {int[] dp = new int[amount+1];Arrays.sort(coins);Arrays.fill(dp, Integer.MAX_VALUE);dp[0] = 0;for (int i = 0; i < coins.length; i++) {for (int j = coins[i]; j <= amount; j++) {if (dp[j - coins[i]] != Integer.MAX_VALUE) {dp[j] = Math.min(dp[j], dp[j - coins[i]] + 1);}}}if (dp[amount] == Integer.MAX_VALUE) return -1;return dp[amount];}
}

遇到的困难

        一开始其实递推公式想到了,但是初始化碰到了问题。最早是直接将dp[0]等于最大值,结果递推时没有限制dp[j-coins[i]]的大小,直接溢出了,后面就有点摸不着头脑了。还有dp[0]=0也很关键,因为按照定义目标值为0时硬币数就应该是0。

279.完全平方数 

题目链接:​​​​​​​279.完全平方数 

代码随想录题解:279.完全平方数 

视频讲解:动态规划之完全背包,换汤不换药!| LeetCode:279.完全平方数_哔哩哔哩_bilibili

解题思路:

        这题跟前一题其实是一样一样的,不同点在于coins这个数组由完全平方数[1*1,2*2,3*3.....]代替了。遍历时注意i*i和j都要小于n就可以。

class Solution {public int numSquares(int n) {int[] dp = new int[n+1];Arrays.fill(dp, Integer.MAX_VALUE);dp[0] = 0;for (int i = 1; i*i <= n; i++) {for (int j = i*i; j <= n; j++) {if (dp[j - i*i] != Integer.MAX_VALUE) {dp[j] = Math.min(dp[j], dp[j-i*i] + 1);}}}if (dp[n] == Integer.MAX_VALUE) return 0;else return dp[n];}
}

看完代码随想录之后的想法 

        这题本质就是:完全平方数就是物品(可以无限件使用),凑个正整数n就是背包,问凑满这个背包最少有多少物品?

        这类求一共有多少组合的问题,先遍历物品或先遍历背包都不影响结果。

遇到的困难

        一开始写的外层条件是i<=n,明显效率较低,因为背包内的物品是i*i,其值不能超过n,因此可以多加一点限制,提高效率。

今日收获

        做了这么多题,感觉公式慢慢熟悉了,就是不知道碰到新的应用题能不能想到用背包做。

这篇关于代码随想录算法训练营第四十五天| 70. 爬楼梯 (进阶),322. 零钱兑换 ,279.完全平方数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/919279

相关文章

springboot循环依赖问题案例代码及解决办法

《springboot循环依赖问题案例代码及解决办法》在SpringBoot中,如果两个或多个Bean之间存在循环依赖(即BeanA依赖BeanB,而BeanB又依赖BeanA),会导致Spring的... 目录1. 什么是循环依赖?2. 循环依赖的场景案例3. 解决循环依赖的常见方法方法 1:使用 @La

使用C#代码在PDF文档中添加、删除和替换图片

《使用C#代码在PDF文档中添加、删除和替换图片》在当今数字化文档处理场景中,动态操作PDF文档中的图像已成为企业级应用开发的核心需求之一,本文将介绍如何在.NET平台使用C#代码在PDF文档中添加、... 目录引言用C#添加图片到PDF文档用C#删除PDF文档中的图片用C#替换PDF文档中的图片引言在当

C#使用SQLite进行大数据量高效处理的代码示例

《C#使用SQLite进行大数据量高效处理的代码示例》在软件开发中,高效处理大数据量是一个常见且具有挑战性的任务,SQLite因其零配置、嵌入式、跨平台的特性,成为许多开发者的首选数据库,本文将深入探... 目录前言准备工作数据实体核心技术批量插入:从乌龟到猎豹的蜕变分页查询:加载百万数据异步处理:拒绝界面

用js控制视频播放进度基本示例代码

《用js控制视频播放进度基本示例代码》写前端的时候,很多的时候是需要支持要网页视频播放的功能,下面这篇文章主要给大家介绍了关于用js控制视频播放进度的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言html部分:JavaScript部分:注意:总结前言在javascript中控制视频播放

Spring Boot + MyBatis Plus 高效开发实战从入门到进阶优化(推荐)

《SpringBoot+MyBatisPlus高效开发实战从入门到进阶优化(推荐)》本文将详细介绍SpringBoot+MyBatisPlus的完整开发流程,并深入剖析分页查询、批量操作、动... 目录Spring Boot + MyBATis Plus 高效开发实战:从入门到进阶优化1. MyBatis

Spring Boot 3.4.3 基于 Spring WebFlux 实现 SSE 功能(代码示例)

《SpringBoot3.4.3基于SpringWebFlux实现SSE功能(代码示例)》SpringBoot3.4.3结合SpringWebFlux实现SSE功能,为实时数据推送提供... 目录1. SSE 简介1.1 什么是 SSE?1.2 SSE 的优点1.3 适用场景2. Spring WebFlu

java之Objects.nonNull用法代码解读

《java之Objects.nonNull用法代码解读》:本文主要介绍java之Objects.nonNull用法代码,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐... 目录Java之Objects.nonwww.chinasem.cnNull用法代码Objects.nonN

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

python+opencv处理颜色之将目标颜色转换实例代码

《python+opencv处理颜色之将目标颜色转换实例代码》OpenCV是一个的跨平台计算机视觉库,可以运行在Linux、Windows和MacOS操作系统上,:本文主要介绍python+ope... 目录下面是代码+ 效果 + 解释转HSV: 关于颜色总是要转HSV的掩膜再标注总结 目标:将红色的部分滤

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调