代码随想录算法训练营第四十四天| LeetCode70. 爬楼梯 (进阶)、322. 零钱兑换、279.完全平方数

本文主要是介绍代码随想录算法训练营第四十四天| LeetCode70. 爬楼梯 (进阶)、322. 零钱兑换、279.完全平方数,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、LeetCode 70. 爬楼梯 (进阶)

题目链接/文章讲解/视频讲解:https://programmercarl.com/0070.%E7%88%AC%E6%A5%BC%E6%A2%AF%E5%AE%8C%E5%85%A8%E8%83%8C%E5%8C%85%E7%89%88%E6%9C%AC.html

状态:已解决

1.思路 

        这道题跟70.爬楼梯 - 力扣(LeetCode)很像,区别在于此题一次性能爬的台阶数不是固定的,而是题目给定的,因此就不能根据之前的递推式做了。

        那我们再来仔细看看这道题,题目给出了需要爬到的楼顶的阶数以及每次可爬的范围。那么这道题实质就是一道完全背包的题:背包容量为n,物品一共m个,且每个物品可以取无限次,问背包装入物品的排列一共有多少种。

        那么这道题就被转换成完全背包问题中的排序题了,跟前一天练的组合总和 Ⅳ-CSDN博客中的377题没有区别。

(1)确定dp数组以及下标含义:

        dp[j]: 爬到第 j 层楼梯,有dp[j]种方法。

(2)确定递推式:

        dp[i]有几种来源,dp[i - 1],dp[i - 2],dp[i - 3] 等等,即:dp[i - j]。那么递推公式为:dp[i] += dp[i - j]

(3)dp数组的初始化:

        既然递归公式是 dp[i] += dp[i - j],那么dp[0] 一定为1,dp[0]是递归中一切数值的基础所在,如果dp[0]是0的话,其他数值都是0了。

        下标非0的dp[i]初始化为0,因为dp[i]是靠dp[i-j]累计上来的,dp[i]本身为0这样才不会影响结果。

(4)确定遍历顺序:

        刚刚说了,这是一个求排列的方式,因此外层循环是容量,内层循环是物品。并且完全背包的两层循环都是从前往后遍历。

(5)举例推导dp数组:

        和刚刚的377题一致。

2.代码实现

#include<bits/stdc++.h>
using namespace std;
int main(void){int n,m;cin>>n>>m;vector<int> dp(n+1,0);dp[0] = 1;for(int j=0;j<=n;j++){for(int i=1;i<=m;i++){if(j >= i) dp[j] += dp[j-i];}}cout<<dp[n];return 0;
}

时间复杂度: O(n * m)

空间复杂度: O(n)

二、322. 零钱兑换

题目链接/文章讲解/视频讲解:https://programmercarl.com/0322.%E9%9B%B6%E9%92%B1%E5%85%91%E6%8D%A2.html

状态:已解决

1.思路 

        做过518. 零钱兑换 II - 力扣(LeetCode)的同学会觉得这两道题很像。确实很像,题目背景是相同的,区别在于518求的是凑钱的所有凑法,而322是求能够凑齐目标金额的最小硬币数。

(1)确定dp数组以及下标含义:

        dp[j]:凑足金额为 j 所需钱币的最少个数为dp[j]。

(2)确定递推公式:

        凑足总额为 j - coins[i] 的最少个数为dp[j - coins[i]],那么只需要加上一个钱币coins[i] 即dp[j - coins[i]] + 1就是dp[j](考虑coins[i]),因为dp[j] 要取所有 dp[j - coins[i]] + 1 中最小的,因此递推公式:dp[j] = min(dp[j - coins[i]] + 1, dp[j]);

(3)dp数组的初始化:

        首先凑齐金额为0所需的硬币数一定为0,那么其他非0下标呢?由递推公式dp[j] = min(dp[j - coins[i]] + 1, dp[j]);我们知道dp[j]是要与计算值求最小的,故为使计算值不被覆盖,初始值就应该为最大值,即:

vector<int> dp(amount+1,INT_MAX);
dp[0] = 0;

(4)确定遍历顺序:

        因为本题要求硬币的最少数量,而不是有多少种凑法,那么钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。所以本题并不强调集合是组合还是排列。所以本题的两个for循环的关系是:外层for循环遍历物品,内层for遍历背包或者外层for遍历背包,内层for循环遍历物品都是可以的!

        按惯例做法,这里采用coins放在外循环,target在内循环的方式。本题钱币数量可以无限使用,那么是完全背包。故内循环是正序遍历。

(5)举例推导dp数组:

        dp[amount]为最终结果。

2.代码实现 

class Solution {
public:int coinChange(vector<int>& coins, int amount) {vector<int> dp(amount+1,INT_MAX);dp[0] = 0;for(int i=0;i<coins.size();i++){for(int j=coins[i];j<=amount;j++){if(dp[j-coins[i]] != INT_MAX)//不为初始值时才做这步dp[j] = min(dp[j],dp[j-coins[i]]+1);}}//for(int i=0;i<=amount;i++) cout<<dp[i]<<" ";if(dp[amount] == INT_MAX) return -1;return dp[amount];}
};

时间复杂度:O(n * amount),n为coins长度

空间复杂度:O(amount) 

三、279.完全平方数

题目链接/文章讲解/视频讲解:https://programmercarl.com/0279.%E5%AE%8C%E5%85%A8%E5%B9%B3%E6%96%B9%E6%95%B0.html

状态:已解决

1.思路 

        换汤不换药,这道题跟上道题如出一辙:给一个容量为n的背包,求装满这个背包最少需要多少物品。物品是什么?就是一个平方数(同个数可以无限使用)。那物品的种类有多少个呢?肯定不超过sqrt(n)个!(sqrt(n)向上取整就是能够凑齐n的平方数的极限值 ),也就是说,上道题的nums[i]在这道题就是 i*i ,除此之外两道题就没有区别了。想清楚了这些,就可以开始写代码了。

(1)确定dp数组以及下标含义:

        dp[j]:和为j的完全平方数的最少数量为dp[j]。

(2)确定递推公式:

        凑足和为 j - i*i 的最少个数为dp[j - i*i],那么只需要加上一个平方数 i*i 即dp[ j - i*i ] + 1就是dp[j](考虑 i * i),因为dp[j] 要取所有 dp[j -i*i ] + 1 中最小的,因此递推公式:dp[j] = min(dp[j - i * i ] + 1, dp[j]);

(3)dp数组的初始化:

        根据题目描述,找到若干个完全平方数(比如 1, 4, 9, 16, ...),并没有从0开始,故给dp[0]=0。

        对于非0下标的dp[j],从递归公式dp[j] = min(dp[j - i * i] + 1, dp[j]) 中可以看出每次dp[j]都要选最小的,所以非0下标的dp[j]一定要初始为最大值,这样dp[j]在递推的时候才不会被初始值覆盖

(4)确定遍历顺序:

        和上题的分析是一致的

(5)举例推导dp数组:

        dp[n]为最终结果。

2.代码实现 

class Solution {
public:int numSquares(int n) {vector<int> dp(n+1,INT_MAX);dp[0] = 0;for(int i=1;i * i<=n;i++){for(int j=i*i;j<=n;j++){if(dp[j-i*i] != INT_MAX)dp[j] = min(dp[j],dp[j-i*i]+1);}}return dp[n];}
};

时间复杂度: O(n * √n)

空间复杂度: O(n)

这篇关于代码随想录算法训练营第四十四天| LeetCode70. 爬楼梯 (进阶)、322. 零钱兑换、279.完全平方数的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/918989

相关文章

Python进阶之Excel基本操作介绍

《Python进阶之Excel基本操作介绍》在现实中,很多工作都需要与数据打交道,Excel作为常用的数据处理工具,一直备受人们的青睐,本文主要为大家介绍了一些Python中Excel的基本操作,希望... 目录概述写入使用 xlwt使用 XlsxWriter读取修改概述在现实中,很多工作都需要与数据打交

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一

在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码

《在MyBatis的XML映射文件中<trim>元素所有场景下的完整使用示例代码》在MyBatis的XML映射文件中,trim元素用于动态添加SQL语句的一部分,处理前缀、后缀及多余的逗号或连接符,示... 在MyBATis的XML映射文件中,<trim>元素用于动态地添加SQL语句的一部分,例如SET或W

使用C#代码计算数学表达式实例

《使用C#代码计算数学表达式实例》这段文字主要讲述了如何使用C#语言来计算数学表达式,该程序通过使用Dictionary保存变量,定义了运算符优先级,并实现了EvaluateExpression方法来... 目录C#代码计算数学表达式该方法很长,因此我将分段描述下面的代码片段显示了下一步以下代码显示该方法如

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

python多进程实现数据共享的示例代码

《python多进程实现数据共享的示例代码》本文介绍了Python中多进程实现数据共享的方法,包括使用multiprocessing模块和manager模块这两种方法,具有一定的参考价值,感兴趣的可以... 目录背景进程、进程创建进程间通信 进程间共享数据共享list实践背景 安卓ui自动化框架,使用的是

SpringBoot生成和操作PDF的代码详解

《SpringBoot生成和操作PDF的代码详解》本文主要介绍了在SpringBoot项目下,通过代码和操作步骤,详细的介绍了如何操作PDF,希望可以帮助到准备通过JAVA操作PDF的你,项目框架用的... 目录本文简介PDF文件简介代码实现PDF操作基于PDF模板生成,并下载完全基于代码生成,并保存合并P

SpringBoot基于MyBatis-Plus实现Lambda Query查询的示例代码

《SpringBoot基于MyBatis-Plus实现LambdaQuery查询的示例代码》MyBatis-Plus是MyBatis的增强工具,简化了数据库操作,并提高了开发效率,它提供了多种查询方... 目录引言基础环境配置依赖配置(Maven)application.yml 配置表结构设计demo_st

SpringCloud集成AlloyDB的示例代码

《SpringCloud集成AlloyDB的示例代码》AlloyDB是GoogleCloud提供的一种高度可扩展、强性能的关系型数据库服务,它兼容PostgreSQL,并提供了更快的查询性能... 目录1.AlloyDBjavascript是什么?AlloyDB 的工作原理2.搭建测试环境3.代码工程1.

Java调用Python代码的几种方法小结

《Java调用Python代码的几种方法小结》Python语言有丰富的系统管理、数据处理、统计类软件包,因此从java应用中调用Python代码的需求很常见、实用,本文介绍几种方法从java调用Pyt... 目录引言Java core使用ProcessBuilder使用Java脚本引擎总结引言python