llama-factory SFT系列教程 (三),chatglm3-6B 大模型命名实体识别实战

本文主要是介绍llama-factory SFT系列教程 (三),chatglm3-6B 大模型命名实体识别实战,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章列表:

  1. llama-factory SFT系列教程 (一),大模型 API 部署与使用
  2. llama-factory SFT系列教程 (二),大模型在自定义数据集 lora 训练与部署
  3. llama-factory SFT系列教程 (三),chatglm3-6B 命名实体识别实战

简介

利用 llama-factory 框架,基于 chatglm3-6B 模型 做命名实体识别任务;

本次实验的数据集、lora微调脚本、部署、推理、预测、评估的等相关资料已全部上传到 modelscope 平台;
output: 文件夹下,为 lora 微调的权重;
点击查看 https://modelscope.cn/datasets/jieshenai/llm_clue_ner2020/files
在这里插入图片描述

装包

git clone https://github.com/hiyouga/LLaMA-Factory.git
# conda create -n llama_factory python=3.10
# conda activate llama_factory
cd LLaMA-Factory
pip install -e .[metrics]

在 LLaMA-Factory 文件夹下,创建一个脚本文件夹,用来存放本次实验的数据集和脚本文件

mkdir glm_ner_scripts
cd glm_ner_scripts
git clone https://www.modelscope.cn/datasets/jieshenai/llm_clue_ner2020.git

使用 git clone 下载数据集和脚本文件

数据集

该数据集参考的 DeepKE的数据格式;

DeepKE 的代码不够通用,本文使用 llama-factory 做命名实体识别和通用的数据集格式,更方便读者学习与使用;

数据里已发布在 modelscope 平台上;

数据集示例:

{"instruction": "你是专门进行实体抽取的专家。请从input中抽取出符合schema定义的实体,不存在的实体类型返回空列表。请按照JSON字符串的格式回答。 schema: ['address', 'book', 'company', 'game', 'government', 'movie']", "input": "浙商银行企业信贷部叶老桂博士则从另一个角度对五道门槛进行了解读。叶老桂认为,对目前>国内商业银行而言,", "output": "{\"address\": [], \"book\": [], \"company\": [\"浙商银行\"], \"game\": [], \"government\": [], \"movie\": []}"
}

将 命名实体识别任务转换为 序列到序列的生成任务;

LLaMA-Factory/data/dataset_info.json 添加自定义数据集的配置信息;
llm_ner: 数据集名;
file_name: 文件名;
file_sha1: 利用 sha1sum train.json 计算文件的sha1值;
在这里插入图片描述

  "llm_ner2_train":{"file_name": "../glm_ner_scripts/llm_clue_ner2020/llm_ner_dataset2/train.json","file_sha1": "8dffb2d6e55ef8916f95ff7ccbcfbfe9d6865d12"},

lora 微调

bash train.sh

train.sh 脚本内容如下:

CUDA_VISIBLE_DEVICES=0 python ../../src/train_bash.py \
--stage sft \
--do_train \
--model_name_or_path ZhipuAI/chatglm3-6b \
--dataset_dir ../../data \
--dataset llm_ner2_train \
--template chatglm3 \
--finetuning_type lora \
--lora_target query_key_value \
--output_dir ./output/output_train \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_strategy epoch \
--learning_rate 5e-5 \
--num_train_epochs 2.0 \
--plot_loss \
--fp16
  • dataset_dir: llama-factory data/dataset_info.json 的文件夹路径;
    因为自定义数据集的配置信息,写在 dataset_info.json 文件中;
  • dataset : 在 data/dataset_info.json 中,配置的自定义数据集的名字;

在output文件夹中可找到训练过程中损失值图:

在这里插入图片描述

train.json 有18000条数据,跑了大概2个小时以上;
24G 显存的显卡恰好可以跑;

API 部署

使用训练完成的 LoRA 权重进行推理;
bash lora_infer.sh

CUDA_VISIBLE_DEVICES=0 API_PORT=8000 python ../../src/api_demo.py \--model_name_or_path ZhipuAI/chatglm3-6b \--adapter_name_or_path output/output_train/checkpoint-2250 \--template chatglm3 \--finetuning_type lora

部署
在这里插入图片描述

训练完成的模型lora权重, 在 modelscope 的 output 文件夹下;

使用 req.ipynb 调用API 接口,与大模型进行交互测试;
点击查看 req.ipynb https://modelscope.cn/datasets/jieshenai/llm_clue_ner2020/file/view/master/req.ipynb?status=1

大模型预测

使用 llm_ner_dataset2/dev.json 而不用 test.json;因为 test.json 的 label 标注有问题,读者忽略 test.json 这个文件即可;

req.ipynb 文本中,提供了如下功能:

  • request 针对大模型 API 发送请求,并处理大模型生成文本的代码;
  • 将大模型 生成的结果与原始数据集拼接在一起保存到 llm_predict2.json;

有待改进:
笔者一次发送一个请求,让大模型处理,大模型一次只能处理一行文本;
如果大模型能一次处理一个batch的文本,就可大大提高推理速度,该功能笔者没有实现;
欢迎读者提供相关的见解👏👏👏

评估

llm_predict2.json 的样例如下:

{"instruction": "{'instruction': '你是专门进行实体抽取的专家。请从input中抽取出符合schema定义的实体,不存在的实体类型返回空列表。请按照JSON字符串的格式回答。', 'schema': ['name', 'organization', 'position', 'scene'], 'input': '来自非洲的原料供应商莫檀壁表示“一些新入行的投资客往往被蓄意炒作的一些‘老前辈’、‘行业专家’、‘'}", "input": "", "output": "{\"name\": [\"莫檀壁\"], \"organization\": [], \"position\": [\"原料供应商\", \"行业专家\"], \"scene\": []}", "predict": {"name": ["莫檀壁"], "organization": [], "position": ["投资客", "专家"], "scene": []}
}
  • output: 真实的label;
  • predict:大模型预测的值;

在上一步预测 的llm_predict2.json 上评估大模型微调的效果;

使用 eval2.ipynb 进行评估实验,评估结果如下:
点击查看 eval2.ipynb https://modelscope.cn/datasets/jieshenai/llm_clue_ner2020/file/view/master/eval2.ipynb?status=1
在这里插入图片描述

缺少数据集

在这里插入图片描述
modelscope 会删除数据集,一言难尽;里面有一个压缩包备份,读者可以关注一下;

这篇关于llama-factory SFT系列教程 (三),chatglm3-6B 大模型命名实体识别实战的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/912624

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型的操作流程

《0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeekR1模型的操作流程》DeepSeekR1模型凭借其强大的自然语言处理能力,在未来具有广阔的应用前景,有望在多个领域发... 目录0基础租个硬件玩deepseek,蓝耘元生代智算云|本地部署DeepSeek R1模型,3步搞定一个应

Ubuntu固定虚拟机ip地址的方法教程

《Ubuntu固定虚拟机ip地址的方法教程》本文详细介绍了如何在Ubuntu虚拟机中固定IP地址,包括检查和编辑`/etc/apt/sources.list`文件、更新网络配置文件以及使用Networ... 1、由于虚拟机网络是桥接,所以ip地址会不停地变化,接下来我们就讲述ip如何固定 2、如果apt安

PyCharm 接入 DeepSeek最新完整教程

《PyCharm接入DeepSeek最新完整教程》文章介绍了DeepSeek-V3模型的性能提升以及如何在PyCharm中接入和使用DeepSeek进行代码开发,本文通过图文并茂的形式给大家介绍的... 目录DeepSeek-V3效果演示创建API Key在PyCharm中下载Continue插件配置Con

Deepseek R1模型本地化部署+API接口调用详细教程(释放AI生产力)

《DeepseekR1模型本地化部署+API接口调用详细教程(释放AI生产力)》本文介绍了本地部署DeepSeekR1模型和通过API调用将其集成到VSCode中的过程,作者详细步骤展示了如何下载和... 目录前言一、deepseek R1模型与chatGPT o1系列模型对比二、本地部署步骤1.安装oll

在不同系统间迁移Python程序的方法与教程

《在不同系统间迁移Python程序的方法与教程》本文介绍了几种将Windows上编写的Python程序迁移到Linux服务器上的方法,包括使用虚拟环境和依赖冻结、容器化技术(如Docker)、使用An... 目录使用虚拟环境和依赖冻结1. 创建虚拟环境2. 冻结依赖使用容器化技术(如 docker)1. 创

Spring AI Alibaba接入大模型时的依赖问题小结

《SpringAIAlibaba接入大模型时的依赖问题小结》文章介绍了如何在pom.xml文件中配置SpringAIAlibaba依赖,并提供了一个示例pom.xml文件,同时,建议将Maven仓... 目录(一)pom.XML文件:(二)application.yml配置文件(一)pom.xml文件:首

Spring Boot整合log4j2日志配置的详细教程

《SpringBoot整合log4j2日志配置的详细教程》:本文主要介绍SpringBoot项目中整合Log4j2日志框架的步骤和配置,包括常用日志框架的比较、配置参数介绍、Log4j2配置详解... 目录前言一、常用日志框架二、配置参数介绍1. 日志级别2. 输出形式3. 日志格式3.1 PatternL

MySQL8.2.0安装教程分享

《MySQL8.2.0安装教程分享》这篇文章详细介绍了如何在Windows系统上安装MySQL数据库软件,包括下载、安装、配置和设置环境变量的步骤... 目录mysql的安装图文1.python访问网址2javascript.点击3.进入Downloads向下滑动4.选择Community Server5.