r3live 使用前提 雷达-相机外参标定 livox_camera_lidar_calibration

本文主要是介绍r3live 使用前提 雷达-相机外参标定 livox_camera_lidar_calibration,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

标定的是相机到雷达的,R3live下面配置的雷达到相机的,所以要把得到外参旋转矩阵求逆,再填入,平移矩阵则取负
港科大livox_camera_calib虽然操作方便,但是使用mid360雷达会有视角问题(投影三维点到相机),尝试了很多场景,标定效果都不理想(推荐场景是楼梯间),看来港大的更适合avia之类窄角度的雷达。livox_camera_lidar_calibration标定效果还不错,但是注意不能使用官方版本,里面有很多坑。ubuntu20下使用不是很友好,小bug比较多,真正意义的全手动标定。坑到怀疑人生

推荐另外一个在线标定方式lidar2cam_calibration

改进版livox_camera_lidar_calibration 使用注意事项
1、获取角点坐标通过点击鼠标左键,通过鼠标右键结束,程序会自动跳转到第二张图片继续重复上述步骤直到获取角点结束。
2、官方教程里用的图片格式是bmp,实测png格式也可以
(png格式转bmp格式 使用conver工具 )

sudo apt install imagemagick
conver 0.png 0.bmp

3、获取点云角点坐标通过shift+鼠标左键拾取,按 q 键跳转到下一个pcd
4、图片和点云bag命名规则从0开始 0.bmp 0.png
5、每次迭代运算的cost,外参结果以齐次矩阵的格式保存 data/parameters/extrinsic.txt下,结果求逆解算修改到r3live
6、计算前在getExt1.launch文件中配置好外参初值。初值对标定结果影响很大
在这里插入图片描述
可以从终端看到
初始的cost 是 3.496e4,优化后为5.749e1
如果标定效果不好的话,就使用 getExt2节点,getExt1节点只优化外参,而getExt2节点在计算的时候会将一开始计算的内参作为初值和外参一起优化。输入指令程序会得到一个新的内参和外参,并用新的参数来进行重投影验证。一般使用getExt1节点即可,如果在外参初值验证过,并且异常值已经剔除后,优化还是有较大的残差,那么可以使用getExt2试一试。使用的前提需要保证标定数据量较大,并且要充分验证结果。
livox_camera_lidar_calibration_modified
求解外参时进行两次优化,第二次优化时不将重投影误差大于阈值的对应点对加入优化方程
opencv 鼠标事件
CV_EVENT_MOUSEMOVE :鼠标移动
CV_EVENT_LBUTTONDOWN : 鼠标左键按下
CV_EVENT_RBUTTONDOWN : 鼠标右键按下
CV_EVENT_MBUTTONDOWN : 鼠标中键按下
CV_EVENT_LBUTTONUP : 鼠标左键放开
CV_EVENT_RBUTTONUP : 右键放开
CV_EVENT_MBUTTONUP : 中键放开
CV_EVENT_LBUTTONDBLCLK : 左键双击
CV_EVENT_RBUTTONDBLCLK : 右键双击
CV_EVENT_MBUTTONDBLCLK : 中键双击
CV_EVENT_MOUSEWHEEL : 鼠标向前(+)或向后(-)滑动
CV_EVENT_MOUSEHWHEEL : 鼠标向右(+)或向左(-)滑动
查看图像像素坐标的软件

sudo apt-get install mtpaint

这篇关于r3live 使用前提 雷达-相机外参标定 livox_camera_lidar_calibration的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/902669

相关文章

详解Vue如何使用xlsx库导出Excel文件

《详解Vue如何使用xlsx库导出Excel文件》第三方库xlsx提供了强大的功能来处理Excel文件,它可以简化导出Excel文件这个过程,本文将为大家详细介绍一下它的具体使用,需要的小伙伴可以了解... 目录1. 安装依赖2. 创建vue组件3. 解释代码在Vue.js项目中导出Excel文件,使用第三

Linux alias的三种使用场景方式

《Linuxalias的三种使用场景方式》文章介绍了Linux中`alias`命令的三种使用场景:临时别名、用户级别别名和系统级别别名,临时别名仅在当前终端有效,用户级别别名在当前用户下所有终端有效... 目录linux alias三种使用场景一次性适用于当前用户全局生效,所有用户都可调用删除总结Linux

java图像识别工具类(ImageRecognitionUtils)使用实例详解

《java图像识别工具类(ImageRecognitionUtils)使用实例详解》:本文主要介绍如何在Java中使用OpenCV进行图像识别,包括图像加载、预处理、分类、人脸检测和特征提取等步骤... 目录前言1. 图像识别的背景与作用2. 设计目标3. 项目依赖4. 设计与实现 ImageRecogni

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Mysql虚拟列的使用场景

《Mysql虚拟列的使用场景》MySQL虚拟列是一种在查询时动态生成的特殊列,它不占用存储空间,可以提高查询效率和数据处理便利性,本文给大家介绍Mysql虚拟列的相关知识,感兴趣的朋友一起看看吧... 目录1. 介绍mysql虚拟列1.1 定义和作用1.2 虚拟列与普通列的区别2. MySQL虚拟列的类型2

使用MongoDB进行数据存储的操作流程

《使用MongoDB进行数据存储的操作流程》在现代应用开发中,数据存储是一个至关重要的部分,随着数据量的增大和复杂性的增加,传统的关系型数据库有时难以应对高并发和大数据量的处理需求,MongoDB作为... 目录什么是MongoDB?MongoDB的优势使用MongoDB进行数据存储1. 安装MongoDB

关于@MapperScan和@ComponentScan的使用问题

《关于@MapperScan和@ComponentScan的使用问题》文章介绍了在使用`@MapperScan`和`@ComponentScan`时可能会遇到的包扫描冲突问题,并提供了解决方法,同时,... 目录@MapperScan和@ComponentScan的使用问题报错如下原因解决办法课外拓展总结@

mysql数据库分区的使用

《mysql数据库分区的使用》MySQL分区技术通过将大表分割成多个较小片段,提高查询性能、管理效率和数据存储效率,本文就来介绍一下mysql数据库分区的使用,感兴趣的可以了解一下... 目录【一】分区的基本概念【1】物理存储与逻辑分割【2】查询性能提升【3】数据管理与维护【4】扩展性与并行处理【二】分区的

使用Python实现在Word中添加或删除超链接

《使用Python实现在Word中添加或删除超链接》在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能,本文将为大家介绍一下Python如何实现在Word中添加或... 在Word文档中,超链接是一种将文本或图像连接到其他文档、网页或同一文档中不同部分的功能。通过添加超

Linux使用fdisk进行磁盘的相关操作

《Linux使用fdisk进行磁盘的相关操作》fdisk命令是Linux中用于管理磁盘分区的强大文本实用程序,这篇文章主要为大家详细介绍了如何使用fdisk进行磁盘的相关操作,需要的可以了解下... 目录简介基本语法示例用法列出所有分区查看指定磁盘的区分管理指定的磁盘进入交互式模式创建一个新的分区删除一个存