本文主要是介绍YOLOv9改进策略 :IoU优化| Inner-IoU基于辅助边框的IoU损失,高效结合新型边界框相似度度量(MPDIoU)| 二次创新,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
💡💡💡本文独家改进:Inner-IoU引入尺度因子 ratio 控制辅助边框的尺度大小用于计算损失,新型边界框相似度度量(MPDIoU)MPDIoU损失进行有效结合
💡💡💡适用场景:小目标数据集,进一步提升检测精度,强烈推荐
《YOLOv9魔术师专栏》将从以下各个方向进行创新:
【原创自研模块】【多组合点优化】【注意力机制】【卷积魔改】【block&多尺度融合结合】【损失&IOU优化】【上下采样优化 】【SPPELAN & RepNCSPELAN4优化】【小目标性能提升】【前沿论文分享】【训练实战篇】
订阅者通过添加WX: AI_CV_0624,入群沟通,提供改进结构图等一系列定制化服务。
订阅者可以申请发票,便于报销
YOLOv9魔术师专栏</
这篇关于YOLOv9改进策略 :IoU优化| Inner-IoU基于辅助边框的IoU损失,高效结合新型边界框相似度度量(MPDIoU)| 二次创新的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!