随着预训练语言模型(LMs)在各种自然语言处理(NLP)任务中的广泛应用,模型微调成为了一个重要的研究方向。传统的全参数微调方法虽然有效,但计算成本高昂,尤其是在大型模型上。为了解决这一问题,来自斯坦福大学和 Pr(Ai)⊃2;R Group 的研究团队推出一种全新的微调方法——表征微调(ReFT)。ReFT方法的核心优势在于,它不直接对模型权重进行更新,而是通过学习对隐藏层表征的特定干预来适应下
探索多智能体强化学习的协同元探索 —— MESA 算法深度解读在多智能体强化学习(MARL)的征途中,如何高效探索以发现最优策略一直是研究者们面临的挑战。特别是在稀疏奖励的环境中,这一问题变得更加棘手。《MESA: Cooperative Meta-Exploration in Multi-Agent Learning through Exploiting State-Action S
相信一些对LLM关注较高的同学们,应该对这家加拿大的Cohere不会太陌生。毕竟此前,它就开源过 Aya 101 和 Command R 这两款大模型。 Cohere 的非营利性研究实验室 Cohere for AI 发布了 Aya 23,这是其多语言大型语言模型 (llm) 的第二次迭代。这个最先进的 LLM 有 8B 和 35B 开放权重两种版本,支持 23 种语言,优于其前身 Aya 10
Diffusion Models专栏文章汇总:入门与实战 SYMPLEX: Controllable Symbolic Music Generation using Simplex Diffusion with Vocabulary Priors http://arxiv.org/abs/2405.12666v1 本文介绍了一种新的符号音乐生成方法,名为SYMPLEX,它基于单纯
文章目录 STAR-Echo: A Novel Biomarker for Prognosis of MACE in Chronic Kidney Disease Patients Using Spatiotemporal Analysis and Transformer-Based Radiomics Models摘要方法实验结果 STAR-Echo: A Novel Biom