4D 成像毫米波雷达:新型传感器助力自动驾驶

2024-05-11 05:04

本文主要是介绍4D 成像毫米波雷达:新型传感器助力自动驾驶,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1 感知是自动驾驶的首要环节,高性能传感器必不可少

        感知环节负责对侦测、识别、跟踪目标,是自动驾驶实现的第一步。自动驾驶的实现,首先要能够准确理解驾驶环境信息,需要对交通主体、交通信号、环境物体等信息进行有效捕捉,根据实时感知的环境信息,自动驾驶系统得以完成接下来的决策、规划与控制等环节。传感器的性能会直接影响到感知信息的质量,目前广泛搭载的传感器有摄像头、激光雷达、毫米波雷达、超声波雷达等。

图1 传感器在自动驾驶实现过程中发挥基础性作用

        特斯拉的视觉感知方案推动自动驾驶行业进入新的篇章。2021 年,特斯拉使用Transformer 算法构建BEV(Bird’s Eye-View, 鸟瞰图)空间,解决了传统视觉感知的深度探测难点, 从而通过视觉也可以进行较为准确的距离估计; 同时,Transformer 算法更契合多个传感器融合,可拓展性更强。2022 年,特斯拉使用基于BEV+Transformer 和占用网络,形成对外部3D 空间的还原,对通用障碍物感知能力进一步增强。特斯拉依靠摄像头进行感知的FSD 功能已经能够实现近乎对全部驾驶场景的覆盖,累计行驶里程呈指数型增长。

图2 特斯拉占用网络的视觉感知具备3D 空间感知

图3 截至2023Q4,FSD 累计行驶里程突破7 亿英里

        特斯拉重新使用毫米波雷达辅助摄像头来提升感知能力。2021 年特斯拉放弃使用毫米波雷达,集中资源进行视觉感知能力的提升。2022 年2 月,马斯克坦言只有非常高分辨率的雷达才有意义,将取消毫米波雷达的原因指向“分辨率不足”;同年6 月,特斯拉向美国联邦通信委员会(FCC)注册一款全新高分辨率雷达设备。根据汽车之心公众号,2023 年2 月,国外博主Greentheonly 曝光特斯拉全新的计算平台HW4.0 为毫米波雷达预留了接口;同年6 月,该博主又放出特斯拉新毫米波雷达的实物图。综合推断,特斯拉将要搭载的新款毫米波雷达将是具有高分辨率的4D 成像毫米波雷达。4D 成像毫米波雷达具有诸多优良特性,能够更好地辅助视觉感知方案。

图4 特斯拉向FCC 注册的新雷达示意图

图5:特斯拉新雷达实物图与此前FCC 备案一致

2 毫米波雷达具有“全天候性质”,但存在分辨率不足的问题

        毫米波雷达通过调制、收发、信号处理进行障碍物的感知。毫米波是电磁波,其频段在30-300GHz 之间,属于“极高频”,抗环境噪声干扰能力强;毫米波波长在1-10 毫米之间,与波长通常为数百至上千纳米的激光相比,它的波长更长,具备传输距离远、绕射能力强、穿透性更好等特点。工作在毫米波波段的雷达称为毫米波雷达,在自动驾驶领域广泛应用。

图6:毫米波雷达波长在1-10mm 之间

        毫米波雷达主要由雷达前端收发模块、数字信号处理单元以及接口模块组成。雷达前端收发模块进行毫米波信号的调制、发射与接收,包括天线阵列、射频前端、中频电路、模数转换器;数字信号处理单元进行信号处理与数据处理,包括DSP(数字信号处理器)、MCU(微控制单元)或FPGA(现场可编程门阵列)等;接口模块负责数据通信以及与其他系统的集成。毫米波半导体技术已经比较成熟,已经在自动驾驶车辆中广泛应用。

图7:毫米波雷达主要由前端雷达传感器、数字信号处理单元以及接口模块构成

        信号收发与信号处理是毫米波雷达运行的重点环节。毫米波雷达工作流程如图7 所示:(1)首先射频发射器产生电磁波信号并且将之发射,信号到达目标物体;(2)物体反射或者散射信号形成回波信号,接收器接收回波信号;(3)混频器将回波信号与原始信号混合,经过滤波器进行滤波,得到中频信号(实际是雷达发射信号与回波信号的频率差,包含有物体的位置、速度等信息);(4)中频信号输入到处理后端进行调制解调、FFT(Fast Fourier Transform,快速傅里叶变换)等算法处理,提取目标信息并进行分析,实现目标检测、距离测量、速度测量、方位估计;
(5)最终将结果输出以进行后续感知处理。

图8:毫米波雷达工作流程

        毫米波雷达能够识别遮挡物体,这一特性为其他传感器所不能比拟。毫米波信号具有多径效应,信号通过反射、漫反射、衍射、绕射等方式,能够检测遮挡物体。大陆集团曾提到基于其ARS430 毫米波雷达的经验,这类遮挡车辆大约在40%的场景中可以被发现。当然其探测遮挡物体的性能表现也基于一些条件,如道路表面情况、前车的位置、以及被遮挡车辆的位置等。而算法对于此类场景的探测尤为重要,华为在其4D 毫米波雷达发布会上也着重提到了这一点。因此,对于鬼探头等普通传感器难以处理且事故高发的Cornor Case,毫米波雷达具有无可替代的优势。

图9:多径效应检测识别“隐藏目标”

图10:雷达电磁波具有多径效应,能够检测遮挡物体

        毫米波雷达具有多种优良特性,对智能驾驶不可或缺。(1)“全天候”:相对波长为纳米级的光波,毫米波波长更长,能够轻易穿过比其波长小的障碍物,一般来说,雨滴、雪花的平均直径均在5mm 以下,因此毫米波雷达工作基本不受雨雪雾等天气的影响,具有“全天候”的特点;(2)具备速度信息:基于毫米波的多普勒效应,毫米波雷达可以获得高精度的速度信息,这对于自动驾驶感知至关重要。

表1:毫米波雷达具有全天候等感知优势

        摄像头与毫米波雷达能够形成感知系统上的优势互补。摄像头是被动感知传感器,具有成本低、易于集成、语义信息丰富等特点,并且摄像头是数据带宽最高的车载传感器之一,可以提供高分辨率图像与实时视觉信息,但是摄像头容易受到恶劣天气、眩光等环境的影响,没有精确的物体深度信息与速度信息。毫米波雷达在摄像头所不足的方面可以提供有效补充,两类传感器融合则能以较低的成本实现性能更好的自动驾驶感知。

图11:毫米波雷达与摄像头优势互补

        传统毫米波雷达无法测高,限制其在自动驾驶中发挥更大的作用。传统毫米波雷达只能探测距离、角度、速度三类信息,由于没有高程信息,限高杆、高架桥等物体容易触发毫米波雷达障碍物反馈,因而实践中只能设定保留动态目标追踪结果或降低毫米波雷达感知权重,导致日常使用中毫米波雷达基本无法识别静止物体。例如特斯拉的辅助驾驶未识别到白色静止卡车导致相撞的事故,是由于摄像头没有分辨出白色车厢与天空的区别,同时毫米波雷达没有准确识别侧翻静止的货车。针对此问题,毫米波雷达需要增加俯仰角的感知能力。

图12:摄像头与毫米波雷达对白色静止卡车识别失误

3 4D 毫米波雷达增添高度维信息,形成精确的感知能力

        4D 毫米波雷达增添俯仰角信息,可以识别物体高度。正如上文提到,毫米波雷达由于无法分辨高度维信息,在使用中会将静止物体识别的置信度降低,如无其他可靠传感的情况下,可能导致误刹或漏刹,造成较差的驾驶体验甚至威胁行驶安全。而如果增加俯仰方向的天线排布,毫米波雷达就能够测量到高度信息,从而克服上述不利的情况,4D 毫米波雷达便应运而生。4D 毫米波雷达中的“4D”指的是距离、方位、速度以及高度,4D 毫米波雷达不仅继承了毫米波雷达的优点,包括
“全天候”有效运行、感知遮挡物体,并且在分辨率、精度上更进一步,能够识别较小的物体、静止物体以及空中障碍物。作为毫米波雷达的升级,4D 毫米波雷达具有更优异的性能,对复杂路况展现了更强的适应性。        

图13:可以通过天线特殊排布方式实现方位-仰角分辨率

图14:4D 毫米波雷达具备俯仰角测量能力

表2:4D 毫米波雷达相对毫米波雷达优势显著

        4D 成像毫米波雷达清晰度更进一步,能够输出三维点云图像。通过改进识别算法、增大雷达孔径等方式,4D 毫米波雷达能够像激光雷达一样输出相对密集的三维点云,能够勾勒出物体的形状,进而识别出物体,具有高清的特质,这就是4D 成像毫米波雷达。相邻两个点云之间的角度即为角分辨率,角分辨率越小则代表雷达清晰度越高,4D 成像毫米波雷达的角分辨率最高可以达到1°以内,意味着在200m 远的范围,雷达能够区分相距约3.5 米或以上的两个物体,对近处的物体
的识别则会更加清晰。由于4D 成像毫米波雷达会生成三维点云,因此对比对象常常是激光雷达,而不再是毫米波雷达。        

图15:毫米波雷达无法识别高度信息(左),4D 成像毫米波雷达点云清晰(右)

        毫米波雷达经过多年发展性价比凸显,点云效果媲美低线束激光雷达。激光雷达具有优秀的性能表现,在905nm 和1550nm 波段广泛应用,可以发射大量激光束进行路况扫描,形成高分辨率点云图像,并且能够对路况进行初步判断,还可以输出目标距离、方位、高度、速度、形态等信息。但由于激光雷达波长短,穿透力弱,同功率下探测距离受限同时还容易受到恶劣天气干扰。4D 成像毫米波雷达点云效果已经可以和低线数激光雷达相当,同样具有高灵敏度与高分辨率的特性,且成本总体较低。在搭载激光雷达的车型上,4D 成像毫米波雷达能够作为安全冗余发挥功能,提升自动驾驶的安全性;在未搭载激光雷达的车型上,4D 成像毫米波雷达能够作为激光雷达的传感器平替,实现自动驾驶功能,助力智能驾驶的普及。Mobileye 在CES 大会上提出,到2025 年,L4 级别自动驾驶感知方案中将只搭载一颗前向激光雷达,侧向将用六颗4D 毫米波雷达来代替两颗激光雷达,以实现L4 级别感知功能,并达到大幅缩减成本的目的。

表3:4D 毫米波雷达性能能够媲美低线激光雷达

图16:Oculii EAGLE 对比Velodyne 16 线激光雷达,能够覆盖更远距离

        4D 成像毫米波雷达是自动驾驶优秀辅助传感器。特斯拉通过Transformer 算法构建BEV 空间,能够对动态物体与静态物体进行有效感知,占用网络又提升其对通用障碍物的感知能力。就4D 毫米波雷达而言,性能方面,相比纯视觉方案通过算法预测距离信息而并非获取真值,激光雷达和4D 毫米波雷达等获取的真值距离信息意味着更高的安全保障;毫米波雷达探测的速度信息精度高于激光雷达,更有助于识别物体运动轨迹和方向。算法层面,诸多多传感器融合的感知算法如BEVFusion 等诞生,有效帮玩家将4D 毫米波雷达信息融入感知系统。因此4D 毫米波雷达有望成为自动驾驶感知的重要组成,助力产品功能落地。

这篇关于4D 成像毫米波雷达:新型传感器助力自动驾驶的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/978581

相关文章

客户案例:安全海外中继助力知名家电企业化解海外通邮困境

1、客户背景 广东格兰仕集团有限公司(以下简称“格兰仕”),成立于1978年,是中国家电行业的领军企业之一。作为全球最大的微波炉生产基地,格兰仕拥有多项国际领先的家电制造技术,连续多年位列中国家电出口前列。格兰仕不仅注重业务的全球拓展,更重视业务流程的高效与顺畅,以确保在国际舞台上的竞争力。 2、需求痛点 随着格兰仕全球化战略的深入实施,其海外业务快速增长,电子邮件成为了关键的沟通工具。

基于51单片机的自动转向修复系统的设计与实现

文章目录 前言资料获取设计介绍功能介绍设计清单具体实现截图参考文献设计获取 前言 💗博主介绍:✌全网粉丝10W+,CSDN特邀作者、博客专家、CSDN新星计划导师,一名热衷于单片机技术探索与分享的博主、专注于 精通51/STM32/MSP430/AVR等单片机设计 主要对象是咱们电子相关专业的大学生,希望您们都共创辉煌!✌💗 👇🏻 精彩专栏 推荐订阅👇🏻 单片机

Python3 BeautifulSoup爬虫 POJ自动提交

POJ 提交代码采用Base64加密方式 import http.cookiejarimport loggingimport urllib.parseimport urllib.requestimport base64from bs4 import BeautifulSoupfrom submitcode import SubmitCodeclass SubmitPoj():de

生信圆桌x生信分析平台:助力生物信息学研究的综合工具

介绍 少走弯路,高效分析;了解生信云,访问 【生信圆桌x生信专用云服务器】 : www.tebteb.cc 生物信息学的迅速发展催生了众多生信分析平台,这些平台通过集成各种生物信息学工具和算法,极大地简化了数据处理和分析流程,使研究人员能够更高效地从海量生物数据中提取有价值的信息。这些平台通常具备友好的用户界面和强大的计算能力,支持不同类型的生物数据分析,如基因组、转录组、蛋白质组等。

Shell脚本实现自动登录服务器

1.登录脚本 login_server.sh #!/bin/bash# ReferenceLink:https://yq.aliyun.com/articles/516347#show all host infos of serverList.txtif [[ -f ./serverList.txt ]]thenhostNum=`cat ./serverList.txt | wc -l`e

Jenkins 通过 Version Number Plugin 自动生成和管理构建的版本号

步骤 1:安装 Version Number Plugin 登录 Jenkins 的管理界面。进入 “Manage Jenkins” -> “Manage Plugins”。在 “Available” 选项卡中搜索 “Version Number Plugin”。选中并安装插件,完成后可能需要重启 Jenkins。 步骤 2:配置版本号生成 打开项目配置页面。在下方找到 “Build Env

以后写代码都是AI自动写了,Cursor+Claude-3.5-Sonnet,Karpathy 点赞的 AI 代码神器。如何使用详细教程

Cursor 情况简介 AI 大神 Andrej Karpathy 都被震惊了!他最近在试用 VS Code Cursor +Claude Sonnet 3.5,结果发现这玩意儿比 GitHub Copilot 还好用! Cursor 在短短时间内迅速成为程序员群体的顶流神器,其背后的原因在于其默认使用 OpenAI 投资的 Claude-3.5-Sonnet 模型,这一举动不仅改变了代码生成

PRN(20201231):驾驶人驾驶决策机制遵循最小作用量原理

王建强, 郑讯佳, 黄荷叶. 驾驶人驾驶决策机制遵循最小作用量原理[J]. 中国公路学报, 2020, v.33;No.200(04):159-172. 观点: 为提升智能汽车的自主决策能力,使其能够学习人的决策智慧以适应复杂多变的道路交通环境,需要揭示驾驶人决策机制。 依据: 物理学中常用最小作用量原理解释自然界(包括物理和生物行为)极值现象。同时,最小作用量原理还用于解释蚂蚁在觅

在 Qt Creator 中,输入 /** 并按下Enter可以自动生成 Doxygen 风格的注释

在 Qt Creator 中,当你输入 /** 时,确实会自动补全标准的 Doxygen 风格注释。这是因为 Qt Creator 支持 Doxygen 以及类似的文档注释风格,并且提供了代码自动补全功能。 以下是如何在 Qt Creator 中使用和显示这些注释标记的步骤: 1. 自动补全 Doxygen 风格注释 在 Qt Creator 中,你可以这样操作: 在你的代码中,将光标放在

Jenkins自动构建部署项目

1. 楔子 在实际开发中,经常需要编译、静态代码检查、自动化测试、打包、部署、启动等一连串重复机械的动作,浪费时间、而且容易出错,而Jenkins就是专门Continuous integration(CI)/ Continuous Deploy(CD)开源工具,本文简单介绍Jenkins的使用。 在线无安装免费试用Jenkins:http://www.jenkins.org.cn/test