谷歌提出新型半监督方法 MixMatch

2024-09-04 16:32

本文主要是介绍谷歌提出新型半监督方法 MixMatch,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

       事实证明,半监督学习可以很好地利用无标注数据,从而减轻对大型标注数据集的依赖。而谷歌的一项研究将当前主流的半监督学习方法统一起来,得到了一种新算法 MixMatch。该算法可以为数据增强得到的无标注样本估计(guess)低熵标签,并利用 MixUp 来混合标注和无标注数据。实验表明,MixMatch 在许多数据集和标注数据上获得了 STOA 结果,展现出巨大优势。例如,在具有 250 个标签的 CIFAR-10 数据集上,MixMatch 将错误率降低了 71%(从 38% 降至 11%),在 STL-10 上错误率也降低了 2 倍。对于差分隐私 (differential privacy),MixMatch 可以在准确率与隐私间实现更好的权衡。最后,研究者通过模型简化测试对 MixMatch 进行了分析,以确定哪些组件对该算法的成功最为重要。

缺少数据怎么办

近期大型深度神经网络取得的成功很大程度上归功于大型标注数据集的存在。然而,对于许多学习任务来说,收集标注数据成本很高,因为它必然涉及专家知识。医学领域就是一个很好的例子,在医学任务中,测量数据出自昂贵的机器,标签则来自于多位人类专家耗时耗力的分析。此外,数据标签可能包含一些隐私类的敏感信息。相比之下,在许多任务中,获取无标注数据要容易得多,成本也低得多。

半监督学习 (SSL) 旨在通过在模型中使用无标注数据,来大大减轻对标注数据的需求。近期许多半监督学习方法都增加了一个损失项,该损失项基于无标注数据计算,以促进模型更好地泛化到未知数据。在最近的工作中,该损失项一般分为三类:熵最小化 [17, 28]——促使模型输出对无标注数据的可信预测;一致性正则化(consistency regularization)——促使模型在其输入受到扰动时产生相同的输出分布;通用正则化(generic regularization)——促使模型很好地泛化,并避免出现对训练数据的过拟合。

谷歌的解决方案

谷歌的这项研究中介绍了一种新型半监督学习算法 MixMatch。该算法引入了单个损失项,很好地将上述主流方法统一到半监督学习中。与以前的方法不同,MixMatch 同时针对所有属性,从而带来以下优势:

  • 实验表明,MixMatch 在所有标准图像基准上都获得了 STOA 结果。例如,在具备 250 个标签的 CIFAR-10 数据集上获得了 11.08% 的错误率(第二名的错误率为 38%);

  • 模型简化测试表明,MixMatch 比其各部分的总和要好;

  • MixMatch 有助于差分隐私学习 (differentially private learning),使 PATE 框架 [34] 中的学生能够获得新的 STOA 结果,该结果在增强隐私保障的同时,也提升了准确率。

简而言之,MixMatch 为无标注数据引入了一个统一的损失项,它在很好地减少了熵的同时也能够保持一致性,以及保持与传统正则化技术的兼容。

图 1:MixMatch 中使用的标签估计过程图。对无标注图像使用 k 次随机数据增强,并将每张增强图像馈送到分类器中。然后,通过调整分布的温度来「锐化」这 K 次预测的平均值。完整说明参见算法 1。

MixMatch 

半监督学习方法 MixMatch 是一种「整体」方法,它结合了半监督学习主流范式的思想和组件。给定一组标注实例 X 及其对应的 one-hot 目标(代表 L 个可能标签中的一个)和一组同样大小的无标注实例 U,MixMatch 可以生成一组增强标注实例 X' 和一组带有「估计」标签的增强无标注实例 U'。然后分别使用 U' 和 X' 计算无标注损失和标注损失。下式即为半监督学习的组合损失 L:

其中 H(p, q) 是分布 p 和 q 之间的交叉熵,T、K、α 和 λ_U 是下面算法 1 中的超参数。下图展示了完整的 MixMatch 算法和图 1 中展示的标签估计过程。

实验

为了测试 MixMatch 的有效性,研究者在半监督学习基准上测试其性能,并执行模型简化测试,梳理 MixMatch 各个组件的作用。

研究者首先评估了 MixMatch 在四个基准数据集上的性能,分别是 CIFAR-10、CIFAR-100、SVHN 和 STL-10。其中前三个数据集是监督学习常用的图像分类基准;利用这些数据集评估半监督学习的标准方法是将数据集中的大部分数据视为无标注的,将一小部分(例如几百或数千个标签)作为标注数据。STL-10 是专为半监督学习设计的数据集,包含 5000 个标注图像和 100,000 个无标注图像,无标注图像的分布与标注数据略有不同。

对于 CIFAR-10,研究者使用 250 到 4000 个不同数量的标注样本来评估每种方法的准确率(标准做法)。结果如图 2 所示。

图 2:对于不同数量的标签,MixMatch 与基线方法在 CIFAR-10 上的错误率对比。「Supervised」表示所有 50000 个训练样本都是标注数据。当使用 250 个标注数据时,MixMatch 的错误率与使用 4000 个标签的次优方法性能相当。

研究者还在具备 10000 个标签的 CIFAR-100 数据集上评估了基于较大模型的 MixMatch,并与 [2] 的结果进行了对比。结果如表 1 所示。

表 1:使用较大模型(2600 万个参数)在 CIFAR-10 和 CIFAR-100 数据集上的错误率对比。

作为标准方法,研究者首先考虑将有 73257 个实例的训练集分割为标注数据和无标注数据的情况。结果如图 3 所示。

图 3:使用不同数量的标签时,MixMatch 与基线方法在 SVHN 数据集上的错误率比较。「Supervised」指所有 73257 个训练实例均为标注数据。在使用 250 个标注样本时,MixMatch 就几乎达到了 Supervised 模型的监督训练准确率。

表 2:MixMatch 与其他方法在 STL-10 数据集上的错误率对比,分为全为标注数据(5000 个)与只使用 1000 个标注数据(其余为无标注数据)两种实验设置。

由于 MixMatch 结合了多种半监督学习机制,它与文献中已有的方法有很多相似之处。因此,研究者通过增删模型组件研究各个组件对模型性能的影响,以便更好地了解哪些组件为 MixMatch 提供更多贡献。

表 4:模型简化测试结果。MixMatch 及其各种「变体」在 CIFAR-10 数据集上的错误率对比,分为 250 个标注数据和 4000 个标注数据两种情况。ICT 使用 EMA 参数和无标注 mixup,无锐化。

这篇关于谷歌提出新型半监督方法 MixMatch的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1136440

相关文章

Oracle数据库使用 listagg去重删除重复数据的方法汇总

《Oracle数据库使用listagg去重删除重复数据的方法汇总》文章介绍了在Oracle数据库中使用LISTAGG和XMLAGG函数进行字符串聚合并去重的方法,包括去重聚合、使用XML解析和CLO... 目录案例表第一种:使用wm_concat() + distinct去重聚合第二种:使用listagg,

Java后端接口中提取请求头中的Cookie和Token的方法

《Java后端接口中提取请求头中的Cookie和Token的方法》在现代Web开发中,HTTP请求头(Header)是客户端与服务器之间传递信息的重要方式之一,本文将详细介绍如何在Java后端(以Sp... 目录引言1. 背景1.1 什么是 HTTP 请求头?1.2 为什么需要提取请求头?2. 使用 Spr

Java如何通过反射机制获取数据类对象的属性及方法

《Java如何通过反射机制获取数据类对象的属性及方法》文章介绍了如何使用Java反射机制获取类对象的所有属性及其对应的get、set方法,以及如何通过反射机制实现类对象的实例化,感兴趣的朋友跟随小编一... 目录一、通过反射机制获取类对象的所有属性以及相应的get、set方法1.遍历类对象的所有属性2.获取

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

Python实现数据清洗的18种方法

《Python实现数据清洗的18种方法》本文主要介绍了Python实现数据清洗的18种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录1. 去除字符串两边空格2. 转换数据类型3. 大小写转换4. 移除列表中的重复元素5. 快速统

Debian如何查看系统版本? 7种轻松查看Debian版本信息的实用方法

《Debian如何查看系统版本?7种轻松查看Debian版本信息的实用方法》Debian是一个广泛使用的Linux发行版,用户有时需要查看其版本信息以进行系统管理、故障排除或兼容性检查,在Debia... 作为最受欢迎的 linux 发行版之一,Debian 的版本信息在日常使用和系统维护中起着至关重要的作

Python中lambda排序的六种方法

《Python中lambda排序的六种方法》本文主要介绍了Python中使用lambda函数进行排序的六种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们... 目录1.对单个变量进行排序2. 对多个变量进行排序3. 降序排列4. 单独降序1.对单个变量进行排序

Python中实现进度条的多种方法总结

《Python中实现进度条的多种方法总结》在Python编程中,进度条是一个非常有用的功能,它能让用户直观地了解任务的进度,提升用户体验,本文将介绍几种在Python中实现进度条的常用方法,并通过代码... 目录一、简单的打印方式二、使用tqdm库三、使用alive-progress库四、使用progres

Python在固定文件夹批量创建固定后缀的文件(方法详解)

《Python在固定文件夹批量创建固定后缀的文件(方法详解)》文章讲述了如何使用Python批量创建后缀为.md的文件夹,生成100个,代码中需要修改的路径、前缀和后缀名,并提供了注意事项和代码示例,... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果5.