day48 ● 198.打家劫舍 ● 213.打家劫舍II ● 337.打家劫舍III

2024-03-01 22:04
文章标签 ii iii 打家劫舍 213 day48 198 337

本文主要是介绍day48 ● 198.打家劫舍 ● 213.打家劫舍II ● 337.打家劫舍III,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一遍过。

当前房屋偷与不偷取决于 前一个房屋和前两个房屋是否被偷了。所以这里就更感觉到,当前状态和前面状态会有一种依赖关系,那么这种依赖关系都是动规的递推公式。

class Solution {
public:int rob(vector<int>& nums) {vector<vector<int>> dp(40001,vector<int>(2,0));for(int i=1;i<=nums.size();i++){int tmp=max(dp[i-1][0],dp[i-1][1]);dp[i][0]=max(tmp,dp[i][0]);dp[i][1]=max(dp[i-1][0]+nums[i-1],dp[i][1]);}return max(dp[nums.size()][0],dp[nums.size()][1]);}
};

 题解的递推公示少了一个维度,

决定dp[i]的因素就是第i房间偷还是不偷。

如果偷第i房间,那么dp[i] = dp[i - 2] + nums[i] ,即:第i-1房一定是不考虑的,找出 下标i-2(包括i-2)以内的房屋,最多可以偷窃的金额为dp[i-2] 加上第i房间偷到的钱。

如果不偷第i房间,那么dp[i] = dp[i - 1],即考 虑i-1房,(注意这里是考虑,并不是一定要偷i-1房,这是很多同学容易混淆的点

然后dp[i]取最大值,即dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);

class Solution {
public:int rob(vector<int>& nums) {if (nums.size() == 0) return 0;if (nums.size() == 1) return nums[0];vector<int> dp(nums.size());dp[0] = nums[0];dp[1] = max(nums[0], nums[1]);for (int i = 2; i < nums.size(); i++) {dp[i] = max(dp[i - 2] + nums[i], dp[i - 1]);}return dp[nums.size() - 1];}
};

 

首尾元素大概知道要分为是否考虑末尾元素,考虑了末尾元素的情况对应选取第二个到最后一个元素,没有题解方法清晰。看了题解。

 可以分为三种情况,

  • 情况一:考虑不包含首尾元素;
  • 情况二:考虑包含首元素,不包含尾元素;
  • 情况二:考虑包含首元素,不包含尾元素;(其实情况二和情况三包括了情况一)
class Solution {
public:int rob(vector<int>& nums) {if(nums.size()==0) return 0;if(nums.size()==1) return nums[0];if(nums.size()==2) return max(nums[0],nums[1]);return max(robrange(nums,0,nums.size()-2),robrange(nums,1,nums.size()-1));}int robrange(vector<int>& nums,int start,int end){if(start==end) return nums[end];vector<int> dp(nums.size()+1,0);dp[start]=nums[start];dp[start+1]=max(nums[start],nums[start+1]);for(int i=start+2;i<=end;i++){dp[i]=max(dp[i-2]+nums[i],dp[i-1]);}return dp[end];}
};

 

 我一开始写的递归版本,超出时间限制了。原因是在算左边的孩子节点时,和算他的左右孩子节点会重复(各自会递归算一次)。

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int rob(TreeNode* root) {int tmpl=0,tmpr=0 ;int tmpll=0,tmplr=0,tmprl=0,tmprr=0;if(root->left){tmpl=rob(root->left);if(root->left->left){tmpll=rob(root->left->left);}if(root->left->right){tmplr=rob(root->left->right);}}if(root->right){tmpr=rob(root->right);if(root->right->left){tmprl=rob(root->right->left);}if(root->right->right){tmprr=rob(root->right->right);}}return max(root->val+tmpll+tmplr+tmprl+tmprr,tmpl+tmpr);}
};

看了题解:对于树的话,首先就要想到遍历方式,前中后序(深度优先搜索)还是层序遍历(广度优先搜索)。本题一定是要后序遍历,因为通过递归函数的返回值来做下一步计算

要注意特判断

if (root == NULL) return 0;
if (root->left == NULL && root->right == NULL) return root->val;

 记忆化搜索:要会使用unordered_map

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:unordered_map<TreeNode*, int> mp;int rob(TreeNode* root) {if(root==NULL) return 0;if(root->left==NULL&&root->right==NULL) return root->val;int tmpl=0,tmpr=0 ;int tmpll=0,tmplr=0,tmprl=0,tmprr=0;if(mp[root]) return mp[root];if(root->left){tmpl=rob(root->left);mp[root->left]=tmpl;if(root->left->left){tmpll=rob(root->left->left);mp[root->left->left]=tmpll;}if(root->left->right){tmplr=rob(root->left->right);mp[root->left->right]=tmplr;}}if(root->right){tmpr=rob(root->right);mp[root->right]=tmpr;if(root->right->left){tmprl=rob(root->right->left);mp[root->right->left]=tmprl;}if(root->right->right){tmprr=rob(root->right->right);mp[root->right->right]=tmprr;}}return max(root->val+tmpll+tmplr+tmprl+tmprr,tmpl+tmpr);}
};

动态规划方法:

 对当前节点是偷与不偷两种状态:dp数组(dp table)以及下标的含义:下标为0记录不偷该节点所得到的的最大金钱,下标为1记录偷该节点所得到的的最大金钱。

如果是偷当前节点,那么左右孩子就不能偷,val1 = cur->val + left[0] + right[0]; (如果对下标含义不理解就再回顾一下dp数组的含义

如果不偷当前节点,那么左右孩子就可以偷,至于到底偷不偷一定是选一个最大的,所以:val2 = max(left[0], left[1]) + max(right[0], right[1]);

/*** Definition for a binary tree node.* struct TreeNode {*     int val;*     TreeNode *left;*     TreeNode *right;*     TreeNode() : val(0), left(nullptr), right(nullptr) {}*     TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}*     TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/
class Solution {
public:int rob(TreeNode* root) {vector<int> res=robrange(root);return max(res[0],res[1]);}vector<int> robrange(TreeNode* root){if(root==NULL) return vector<int>{0,0};vector<int> left=robrange(root->left);vector<int> right=robrange(root->right);return vector<int>{max(left[0],left[1])+max(right[0],right[1]),root->val+left[0]+right[0]};}
};

上题是树形dp入门。

这篇关于day48 ● 198.打家劫舍 ● 213.打家劫舍II ● 337.打家劫舍III的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/763970

相关文章

动态规划---打家劫舍

题目: 你是一个专业的小偷,计划偷窃沿街的房屋。每间房内都藏有一定的现金,影响你偷窃的唯一制约因素就是相邻的房屋装有相互连通的防盗系统,如果两间相邻的房屋在同一晚上被小偷闯入,系统会自动报警。 给定一个代表每个房屋存放金额的非负整数数组,计算你 不触动警报装置的情况下 ,一夜之内能够偷窃到的最高金额。 思路: 动态规划五部曲: 1.确定dp数组及含义 dp数组是一维数组,dp[i]代表

AI基础 L9 Local Search II 局部搜索

Local Beam search 对于当前的所有k个状态,生成它们的所有可能后继状态。 检查生成的后继状态中是否有任何状态是解决方案。 如果所有后继状态都不是解决方案,则从所有后继状态中选择k个最佳状态。 当达到预设的迭代次数或满足某个终止条件时,算法停止。 — Choose k successors randomly, biased towards good ones — Close

从0到1,AI我来了- (7)AI应用-ComfyUI-II(进阶)

上篇comfyUI 入门 ,了解了TA是个啥,这篇,我们通过ComfyUI 及其相关Lora 模型,生成一些更惊艳的图片。这篇主要了解这些内容:         1、哪里获取模型?         2、实践如何画一个美女?         3、附录:               1)相关SD(稳定扩散模型的组成部分)               2)模型放置目录(重要)

学习记录:js算法(二十八):删除排序链表中的重复元素、删除排序链表中的重复元素II

文章目录 删除排序链表中的重复元素我的思路解法一:循环解法二:递归 网上思路 删除排序链表中的重复元素 II我的思路网上思路 总结 删除排序链表中的重复元素 给定一个已排序的链表的头 head , 删除所有重复的元素,使每个元素只出现一次 。返回 已排序的链表 。 图一 图二 示例 1:(图一)输入:head = [1,1,2]输出:[1,2]示例 2:(图

LeetCode:3177. 求出最长好子序列 II 哈希表+动态规划实现n*k时间复杂度

3177. 求出最长好子序列 II 题目链接 题目描述 给你一个整数数组 nums 和一个非负整数k 。如果一个整数序列 seq 满足在下标范围 [0, seq.length - 2] 中 最多只有 k 个下标i满足 seq[i] != seq[i + 1] ,那么我们称这个整数序列为好序列。请你返回 nums中好子序列的最长长度。 实例1: 输入:nums = [1,2,1,1,3],

代码训练营 Day26 | 47.排序II | 51. N-皇后 |

47.排序II 1.跟46题一样只不过加一个树层去重 class Solution(object):def backtracking(self,nums,path,result,used):# recursion stopif len(path) == len(nums):# collect our setresult.append(path[:])return for i in range(

代码随想录训练营day37|52. 携带研究材料,518.零钱兑换II,377. 组合总和 Ⅳ,70. 爬楼梯

52. 携带研究材料 这是一个完全背包问题,就是每个物品可以无限放。 在一维滚动数组的时候规定了遍历顺序是要从后往前的,就是因为不能多次放物体。 所以这里能多次放物体只需要把遍历顺序改改就好了 # include<iostream># include<vector>using namespace std;int main(){int n,m;cin>>n>>m;std::vector<i

代码随想录刷题day25丨491.递增子序列 ,46.全排列 ,47.全排列 II

代码随想录刷题day25丨491.递增子序列 ,46.全排列 ,47.全排列 II 1.题目 1.1递增子序列 题目链接:491. 非递减子序列 - 力扣(LeetCode) 视频讲解:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili 文档讲解:https://programmercarl.com/0491.%E9%80%92%E

代码随想录算法训练营Day37|完全背包问题、518.零钱兑换II、377. 组合总和 Ⅳ、70. 爬楼梯(进阶版)

完全背包问题                  和01背包最大区别就是一个物品可以重复放多次,因此遍历空间时可以从前往后。 import java.util.*;public class Main{public static void main (String[] args) {Scanner sc = new Scanner(System.in);int m = sc.nextInt

代码随想录刷题day24丨93.复原IP地址 ,78.子集 , 90.子集II

代码随想录刷题day24丨93.复原IP地址 ,78.子集 , 90.子集II 1.题目 1.1复原IP地址 题目链接:93. 复原 IP 地址 - 力扣(LeetCode) 视频讲解:回溯算法如何分割字符串并判断是合法IP?| LeetCode:93.复原IP地址_哔哩哔哩_bilibili 文档讲解:https://programmercarl.com/0093.%E5%A4%8