代码随想录刷题day25丨491.递增子序列 ,46.全排列 ,47.全排列 II

2024-09-08 05:28

本文主要是介绍代码随想录刷题day25丨491.递增子序列 ,46.全排列 ,47.全排列 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

代码随想录刷题day25丨491.递增子序列 ,46.全排列 ,47.全排列 II

1.题目

1.1递增子序列

  • 题目链接:491. 非递减子序列 - 力扣(LeetCode)

    在这里插入图片描述

  • 视频讲解:回溯算法精讲,树层去重与树枝去重 | LeetCode:491.递增子序列_哔哩哔哩_bilibili

  • 文档讲解:https://programmercarl.com/0491.%E9%80%92%E5%A2%9E%E5%AD%90%E5%BA%8F%E5%88%97.html

  • 解题思路:回溯

    • 用[4, 7, 6, 7]这个数组来举例,抽象为树形结构如图:

      在这里插入图片描述

  • 代码:

    class Solution {List<List<Integer>> result = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> findSubsequences(int[] nums) {backtracking(nums, 0);return result;}void backtracking(int[] nums, int startIndex) {if(path.size() >= 2){result.add(new ArrayList<>(path));}Set<Integer> tempSet = new HashSet<>();// 使用set对本层元素进行去重for (int i = startIndex; i < nums.length; i++) {if((!path.isEmpty() && nums[i] < path.get(path.size() - 1)) || tempSet.contains(nums[i])){continue;}tempSet.add(nums[i]);path.add(nums[i]);backtracking(nums,i + 1);path.remove(path.size() - 1);}}
    }
    
  • 总结:

    • 本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了。所以不能使用之前的去重逻辑!
    • 数组,set,map都可以做哈希表,而且数组干的活,map和set都能干,但如果数值范围小的话能用数组尽量用数组

1.2全排列

  • 题目链接:46. 全排列 - 力扣(LeetCode)

    在这里插入图片描述

  • 视频讲解:组合与排列的区别,回溯算法求解的时候,有何不同?| LeetCode:46.全排列_哔哩哔哩_bilibili

  • 文档讲解:https://programmercarl.com/0046.%E5%85%A8%E6%8E%92%E5%88%97.html

  • 解题思路:回溯

    • 以[1,2,3]为例,抽象成树形结构如下:

      在这里插入图片描述

    • 回溯三部曲

      • 递归函数参数

        List<List<Integer>> result = new ArrayList<>();
        List<Integer> path = new ArrayList<>();
        void backtracking(int[] nums,boolean[] used)
        
      • 递归终止条件

        if(path.size() == nums.length){result.add(new ArrayList<>(path));return;
        }
        
      • 单层搜索的逻辑

        for(int i = 0;i < nums.length;i++){if(used[i] == true){continue;}path.add(nums[i]);used[i] = true;backtracking(nums,used);used[i] = false;path.remove(path.size() - 1);
        }
        
  • 代码:

    class Solution {List<List<Integer>> result = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permute(int[] nums) {boolean[] used = new boolean[nums.length];backtracking(nums,used);return result;}void backtracking(int[] nums,boolean[] used){if(path.size() == nums.length){result.add(new ArrayList<>(path));return;}for(int i = 0;i < nums.length;i++){if(used[i] == true){continue;}path.add(nums[i]);used[i] = true;backtracking(nums,used);used[i] = false;path.remove(path.size() - 1);}}
    }
    
  • 总结:

    • 每层都是从0开始搜索而不是startIndex
    • 需要used数组记录path里都放了哪些元素了

1.3全排列 II

  • 题目链接:47. 全排列 II - 力扣(LeetCode)

    在这里插入图片描述

  • 视频讲解:回溯算法求解全排列,如何去重?| LeetCode:47.全排列 II_哔哩哔哩_bilibili

  • 文档讲解:https://programmercarl.com/0047.%E5%85%A8%E6%8E%92%E5%88%97II.html

  • 解题思路:回溯

    • 去重一定要对元素进行排序,这样我们才方便通过相邻的节点来判断是否重复使用了

    • 以示例中的 [1,1,2]为例 (为了方便举例,已经排序)抽象为一棵树,去重过程如图:

      在这里插入图片描述

    • 图中我们对同一树层,前一位(也就是nums[i-1])如果使用过,那么就进行去重。

  • 代码:

    class Solution {List<List<Integer>> result = new ArrayList<>();List<Integer> path = new ArrayList<>();public List<List<Integer>> permuteUnique(int[] nums) {boolean[] used = new boolean[nums.length];Arrays.sort(nums);backtracking(nums, used);return result;}void backtracking(int[] nums, boolean[] used) {if (path.size() == nums.length) {result.add(new ArrayList<>(path));return;}for (int i = 0; i < nums.length; i++) {if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {continue;}if (used[i] == true) {continue;}path.add(nums[i]);used[i] = true;backtracking(nums, used);used[i] = false;path.remove(path.size() - 1);}}
    }
    
  • 总结:

    • 一般来说:组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题就是取树上所有节点的结果

这篇关于代码随想录刷题day25丨491.递增子序列 ,46.全排列 ,47.全排列 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147243

相关文章

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

最长公共子序列问题的深度分析与Java实现方式

《最长公共子序列问题的深度分析与Java实现方式》本文详细介绍了最长公共子序列(LCS)问题,包括其概念、暴力解法、动态规划解法,并提供了Java代码实现,暴力解法虽然简单,但在大数据处理中效率较低,... 目录最长公共子序列问题概述问题理解与示例分析暴力解法思路与示例代码动态规划解法DP 表的构建与意义动

关于最长递增子序列问题概述

《关于最长递增子序列问题概述》本文详细介绍了最长递增子序列问题的定义及两种优化解法:贪心+二分查找和动态规划+状态压缩,贪心+二分查找时间复杂度为O(nlogn),通过维护一个有序的“尾巴”数组来高效... 一、最长递增子序列问题概述1. 问题定义给定一个整数序列,例如 nums = [10, 9, 2

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加

JAVA调用Deepseek的api完成基本对话简单代码示例

《JAVA调用Deepseek的api完成基本对话简单代码示例》:本文主要介绍JAVA调用Deepseek的api完成基本对话的相关资料,文中详细讲解了如何获取DeepSeekAPI密钥、添加H... 获取API密钥首先,从DeepSeek平台获取API密钥,用于身份验证。添加HTTP客户端依赖使用Jav

Java实现状态模式的示例代码

《Java实现状态模式的示例代码》状态模式是一种行为型设计模式,允许对象根据其内部状态改变行为,本文主要介绍了Java实现状态模式的示例代码,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来... 目录一、简介1、定义2、状态模式的结构二、Java实现案例1、电灯开关状态案例2、番茄工作法状态案例

nginx-rtmp-module模块实现视频点播的示例代码

《nginx-rtmp-module模块实现视频点播的示例代码》本文主要介绍了nginx-rtmp-module模块实现视频点播,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习... 目录预置条件Nginx点播基本配置点播远程文件指定多个播放位置参考预置条件配置点播服务器 192.

CSS自定义浏览器滚动条样式完整代码

《CSS自定义浏览器滚动条样式完整代码》:本文主要介绍了如何使用CSS自定义浏览器滚动条的样式,包括隐藏滚动条的角落、设置滚动条的基本样式、轨道样式和滑块样式,并提供了完整的CSS代码示例,通过这些技巧,你可以为你的网站添加个性化的滚动条样式,从而提升用户体验,详细内容请阅读本文,希望能对你有所帮助...