代码随想录算法训练营Day37|完全背包问题、518.零钱兑换II、377. 组合总和 Ⅳ、70. 爬楼梯(进阶版)

本文主要是介绍代码随想录算法训练营Day37|完全背包问题、518.零钱兑换II、377. 组合总和 Ⅳ、70. 爬楼梯(进阶版),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完全背包问题

        

        和01背包最大区别就是一个物品可以重复放多次,因此遍历空间时可以从前往后。

import java.util.*;
public class Main{public static void main (String[] args) {Scanner sc = new Scanner(System.in);int m = sc.nextInt();int n = sc.nextInt();int[] weight = new int[m];int[] value = new int[m];for(int i = 0; i < m; i++){weight[i] = sc.nextInt();value[i] = sc.nextInt();}int[] dp = new int[n+1];for(int i = 0; i< weight.length; i++){for(int j = weight[i]; j<=n; j++){if(j-weight[i] >=0){dp[j] = Math.max(dp[j],dp[j-weight[i]]+value[i]);}}}System.out.println(dp[n]);}
}

518.零钱兑换II

        这题一定要手推以下dp数组才能更好理解,虽然费电时间,但感觉一点点疏通了。

        dp[j] :装满j的背包,要多少种方法。

        递推公式:                dp[j] += dp[j-coins[i]];

        凡是装满容量为[j]的背包有多少种方法,都是这个公式。

        初始化:dp[0] = 1;设置为0的话地推出来都是0        

        遍历顺序:外层遍历物品,内层遍历背包,遍历出来是组合数。

如果反过来,外层遍历背包,内层遍历物品,遍历出来是排列数。

        打印dp数组:手推的时候,我把这题类比成爬楼梯,外层遍历的是腿长,代表我一次能跨几个台阶,内层遍历的就是台阶高度了。一开始腿长只是1,到达任意台阶都只能一步一步上去,所以就是dp[j] = 1;然后能跨两步的时候,是把一步一步跨的dp[j],加上当前台阶减去两步的最大方法数(dp[j-2]),加起来。这里计算的是方法数,不是步数,所以不需要再加1.因为在j-2的台阶往j台阶。要么一步一步跨(dp[j] 就是这种情况),要么跨两步(就是dp[j-2])。

class Solution {public int change(int amount, int[] coins) {int[] dp = new int[amount + 1];dp[0] = 1;for(int i = 0; i < coins.length; i++){for(int j = coins[i]; j <= amount; j++){dp[j] += dp[j-coins[i]];}}return dp[amount];}
}

377. 组合总和 Ⅳ

        如果上题手推,这题就是小葱拌豆腐,不再分析了。

class Solution {public int combinationSum4(int[] nums, int target) {int[] dp = new int[target +1];dp[0] = 1;for(int j = 1; j <=target; j++){for(int i = 0; i< nums.length; i++){if(j-nums[i] >= 0){dp[j] += dp[j-nums[i]];}}}return dp[target];}
}

70. 爬楼梯(进阶版)

        在写零钱兑换题解的时候还没写这题,自己进行了类比,没想到这就来了。基本就是照抄了。

import java.util.*;public class Main{public static void main (String[] args) {Scanner sc = new Scanner(System.in);int n = sc.nextInt();int m = sc.nextInt();int[] dp = new int[n+1];dp[0] = 1;for(int j = 1; j <= n; j++){for(int i =1; i <= m; i++){if(j>=i){dp[j] += dp[j - i];}}}System.out.println(dp[n]);}
}

这篇关于代码随想录算法训练营Day37|完全背包问题、518.零钱兑换II、377. 组合总和 Ⅳ、70. 爬楼梯(进阶版)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1146946

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

深度解析Python装饰器常见用法与进阶技巧

《深度解析Python装饰器常见用法与进阶技巧》Python装饰器(Decorator)是提升代码可读性与复用性的强大工具,本文将深入解析Python装饰器的原理,常见用法,进阶技巧与最佳实践,希望可... 目录装饰器的基本原理函数装饰器的常见用法带参数的装饰器类装饰器与方法装饰器装饰器的嵌套与组合进阶技巧

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN