从0到1,AI我来了- (7)AI应用-ComfyUI-II(进阶)

2024-09-09 07:20
文章标签 进阶 ai 应用 ii 我来 comfyui

本文主要是介绍从0到1,AI我来了- (7)AI应用-ComfyUI-II(进阶),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        上篇comfyUI 入门 ,了解了TA是个啥,这篇,我们通过ComfyUI 及其相关Lora 模型,生成一些更惊艳的图片。这篇主要了解这些内容:

        1、哪里获取模型?

        2、实践如何画一个美女?

        3、附录:

              1)相关SD(稳定扩散模型的组成部分)
              2)模型放置目录(重要)

       

1、哪里获取comfyUI 所需模型?

        说几个常用的:

        地址1:https://huggingface.co/models

        地址2:https://www.liblib.art/

        地址3:Comfy Workflows images page

        地址4:https://civitai.com/

        

2、实践如何画一个美女?

        先看效果图:

        怎么实现的呢?请参考如下流程:

        从这里 下载 工作流:Bikini Girl v2

        整体流程:①先下载workflow JSON 文件=》②下载所需模型(如下图)=》③模型放置对于目录=》启动comfyUI

        ①工作流文件下载:下图左上角下载,也可下载我的 (如本文可下载文件)

        ② 模型下载相关模型:下图Models ,挨个下载   

        ③按要求放置模型到指定位置:可以参考我的(附录2)

        ④启动ComfyUI ,执行 Queue Prompt,等待即可

Note: 不加Naked ,对身体不好。

3、附录

1)相关SD(稳定扩散模型的组成部分) 解释

Components of a Stable Diffusion Model稳定扩散模型的组成部分

Stable Diffusion isn't just one large, single model. Instead, it's made up of various components and models that collaborate to generate images from text.Stable Diffusion

不仅仅是一个大型的单一模型。相反,它由各种组件和模型组成,这些组件和模型协同工作以从文本生成图像。

Model files are large .ckpt or .safetensors files obtained from repositories such as HuggingFace or CivitAI. These files contain the weights for three different models:模型文件很大.ckpt,或者.safetensors是从 HuggingFace 或 CivitAI 等存储库获取的文件。这些文件包含三种不同模型的权重:

  1. CLIP - a model to convert text prompt to a compressed format that the UNET model can understandCLIP - 将文本提示转换为 UNET 模型可以理解的压缩格式的模型
  2. MODEL - the main Stable Diffusion model, also known as UNET. Generates a compressed imageMODEL - 主要的 Stable Diffusion 模型,也称为 UNET。生成压缩图像
  3. VAE - Decodes the compressed image to a normal-looking imageVAE - 将压缩的图像解码为外观正常的图像

(UNET模型是一种用于图像分割的深度学习架构)

①CheckpointLoader 检查点加载器 

In the default ComfyUI workflow, the CheckpointLoader serves as a representation of the model files. It allows users to select a checkpoint to load and displays three different outputs: MODELCLIP, and VAE.在默认的 ComfyUI 工作流中,CheckpointLoader 用作模型文件的表示。它允许用户选择要加载的检查点,并显示三种不同的输出: MODEL 、 CLIP 和 VAE 。

CheckpointLoader

① CLIP Model CLIP 模型 

The CLIP model is connected to CLIPTextEncode nodes. CLIP, acting as a text encoder, converts text to a format understandable by the main MODEL.CLIP 模型连接到 CLIPTextEncode 节点。CLIP 充当文本编码器,将文本转换为主 MODEL 可以理解的格式。

CLIPTextEncode

②Stable Diffusion MODEL (aka UNET)2. 稳定扩散模型(又名 UNET)

In Stable Diffusion, image generation involves a sampler, represented by the sampler node in ComfyUI. The sampler takes the main Stable Diffusion MODEL, positive and negative prompts encoded by CLIP, and a Latent Image as inputs. The Latent Image is an empty image since we are generating an image from text (txt2img).在 Stable Diffusion 中,图像生成涉及一个采样器,由 ComfyUI 中的 sampler 节点表示。采样器采用主要的 Stable Diffusion MODEL、CLIP 编码的正负提示以及 Latent Image 作为输入。Latent Image 是一个空图像,因为我们是从文本 (txt2img) 生成图像。

Sampler

The sampler adds noise to the input latent image and denoises it using the main MODEL. Gradual denoising, guided by encoded prompts, is the process through which Stable Diffusion generates images.采样器将噪声添加到输入的潜在图像中,并使用主 MODEL 对其进行去噪。在编码提示的引导下,逐渐降噪是 Stable Diffusion 生成图像的过程。

③VAE Model VAE 模型 

The third model used in Stable Diffusion is the VAE, responsible for translating an image from latent space to pixel space. Latent space is the format understood by the main MODEL, while pixel space is the format recognizable by image viewers.稳定扩散 中使用的第三个模型是 VAE,负责将图像从潜在空间转换为像素空间。潜在空间是主 MODEL 可以理解的格式,而像素空间是图像查看器可识别的格式。

VAEDecode

The VAEDecode node takes the latent image from the sampler as input and outputs a regular image. This image is then saved to a PNG file using the SaveImage node.VAEDecode 节点将采样器中的潜在图像作为输入,并输出常规图像。然后,使用 SaveImage 节点将此图像保存为 PNG 文件。

2)

pwd
/opt/tech/git/ComfyUI/models
❯ tree ./
./
├── checkpoints
│   ├── juggernaut_reborn.safetensors
│   ├── put_checkpoints_here
│   └── v1-5-pruned-emaonly.ckpt
├── clip
│   └── put_clip_or_text_encoder_models_here
├── clip_vision
│   └── put_clip_vision_models_here
├── configs
│   ├── anything_v3.yaml
│   ├── v1-inference.yaml
│   ├── v1-inference_clip_skip_2.yaml
│   ├── v1-inference_clip_skip_2_fp16.yaml
│   ├── v1-inference_fp16.yaml
│   ├── v1-inpainting-inference.yaml
│   ├── v2-inference-v.yaml
│   ├── v2-inference-v_fp32.yaml
│   ├── v2-inference.yaml
│   ├── v2-inference_fp32.yaml
│   └── v2-inpainting-inference.yaml
├── controlnet
│   ├── control_v11f1e_sd15_tile.pth
│   ├── control_v11f1e_sd15_tile_fp16.safetensors
│   ├── controlnet11Models_openpose.safetensors
│   └── put_controlnets_and_t2i_here
├── diffusers
│   └── put_diffusers_models_here
├── diffusion_models
│   └── put_diffusion_model_files_here
├── embeddings
│   ├── JuggernautNegative-neg.pt
│   └── put_embeddings_or_textual_inversion_concepts_here
├── gligen
│   └── put_gligen_models_here
├── hypernetworks
│   └── put_hypernetworks_here
├── loras
│   ├── JuggerCineXL2.safetensors
│   ├── add-detail-xl.safetensors
│   ├── add_detail.safetensors
│   ├── juggernaut_reborn.safetensors
│   └── put_loras_here
├── mmdets
│   └── bbox
├── onnx
├── photomaker
│   └── put_photomaker_models_here
├── sams
│   └── sam_vit_b_01ec64.pth
├── style_models
│   └── put_t2i_style_model_here
├── ultralytics
│   ├── bbox
│   │   └── hand_yolov8s.pt
│   └── segm
├── unet
│   └── put_unet_files_here
├── upscale_models
│   ├── 4x_NMKD-Superscale-SP_178000_G.pth
│   └── put_esrgan_and_other_upscale_models_here
├── vae
│   └── put_vae_here
└── vae_approx└── put_taesd_encoder_pth_and_taesd_decoder_pth_here

     

这篇关于从0到1,AI我来了- (7)AI应用-ComfyUI-II(进阶)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1150518

相关文章

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

Spring Security 从入门到进阶系列教程

Spring Security 入门系列 《保护 Web 应用的安全》 《Spring-Security-入门(一):登录与退出》 《Spring-Security-入门(二):基于数据库验证》 《Spring-Security-入门(三):密码加密》 《Spring-Security-入门(四):自定义-Filter》 《Spring-Security-入门(五):在 Sprin

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

中文分词jieba库的使用与实景应用(一)

知识星球:https://articles.zsxq.com/id_fxvgc803qmr2.html 目录 一.定义: 精确模式(默认模式): 全模式: 搜索引擎模式: paddle 模式(基于深度学习的分词模式): 二 自定义词典 三.文本解析   调整词出现的频率 四. 关键词提取 A. 基于TF-IDF算法的关键词提取 B. 基于TextRank算法的关键词提取

水位雨量在线监测系统概述及应用介绍

在当今社会,随着科技的飞速发展,各种智能监测系统已成为保障公共安全、促进资源管理和环境保护的重要工具。其中,水位雨量在线监测系统作为自然灾害预警、水资源管理及水利工程运行的关键技术,其重要性不言而喻。 一、水位雨量在线监测系统的基本原理 水位雨量在线监测系统主要由数据采集单元、数据传输网络、数据处理中心及用户终端四大部分构成,形成了一个完整的闭环系统。 数据采集单元:这是系统的“眼睛”,

Java进阶13讲__第12讲_1/2

多线程、线程池 1.  线程概念 1.1  什么是线程 1.2  线程的好处 2.   创建线程的三种方式 注意事项 2.1  继承Thread类 2.1.1 认识  2.1.2  编码实现  package cn.hdc.oop10.Thread;import org.slf4j.Logger;import org.slf4j.LoggerFactory

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G