m基于万能逼近原理自适应模糊控制算法的多自由度AUV运动控制抗干扰补偿simulink仿真

本文主要是介绍m基于万能逼近原理自适应模糊控制算法的多自由度AUV运动控制抗干扰补偿simulink仿真,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.算法仿真效果

2.算法涉及理论知识概要

3.MATLAB核心程序

4.完整算法代码文件


1.算法仿真效果

matlab2022a仿真结果如下:

 

 

 

2.算法涉及理论知识概要

        自主水下航行器(Autonomous Underwater Vehicle,AUV)是一种具有自主性、灵活性、隐蔽性等优点的智能化设备,广泛应用于水下勘探、监测、搜救等任务。在AUV的运动控制中,需要考虑到水下环境的复杂性和不确定性,如水流、深度、海浪等因素都会对AUV的运动控制产生影响。因此,如何设计一种能够有效应对水下环境干扰的多自由度AUV运动控制算法是一个重要的问题。

      基于万能逼近原理自适应模糊控制算法的多自由度AUV运动控制抗干扰补偿算法采用了自适应模糊控制和抗干扰补偿技术,其主要思路如下:

  1. 建立多自由度AUV的数学模型,包括姿态、速度、加速度等状态变量,以及控制输入变量,如推力、转矩等。这是设计任何控制算法的第一步,在AUV的运动控制中,需要考虑到多自由度的运动状态变量,这包括位置、速度、角度、角速度和加速度等多个方面,同时需要考虑到控制输入变量,如推力、转矩等。

  2. 设计自适应模糊控制器,该控制器包括模糊推理机和自适应机制两部分。模糊推理机用于将输入的状态变量映射为控制输入,自适应机制用于不断更新模糊规则的参数,以适应不同的工作环境和干扰情况。模糊控制器是一种基于模糊推理的控制器,通过模糊推理机将输入的状态变量映射成为控制输入,以实现对多自由度AUV的控制。而自适应机制是指通过对模糊规则参数的不断调整来适应不同的环境和干扰情况,从而实现控制系统的自适应性和鲁棒性。具体地,自适应机制可以通过反馈控制来不断更新模糊规则中的参数,使其能够更加准确地描述AUV的运动状态和控制输入之间的关系。

  3. 设计抗干扰补偿器,该补偿器用于抵消水下环境的干扰,包括水流、深度、海浪等因素。水下环境的复杂性和不确定性,使得AUV的运动控制受到各种干扰,如水流、深度变化、海浪等因素都会影响AUV的运动轨迹和控制输入。因此,设计一种有效的抗干扰补偿器是非常重要的。抗干扰补偿器可以通过对水下环境的实时监测和分析,采用补偿控制策略对控制输入进行调整,以抵消水下环境干扰,保证AUV的运动控制精度和稳定性。

  4. 将自适应模糊控制器和抗干扰补偿器组合起来,形成多自由度AUV的运动控制系统。在控制过程中,自适应模糊控制器根据当前状态变量的值计算出控制输入,抗干扰补偿器则根据环境的干扰程度对控制输入进行补偿,从而实现多自由度AUV的精确控制。

三、算法特点

与传统的控制算法相比,基于万能逼近原理自适应模糊控制算法的多自由度AUV运动控制抗干扰补偿算法具有以下特点:

  1. 自适应性强:该算法采用自适应模糊控制和抗干扰补偿技术,能够根据环境干扰的程度自适应地调整控制输入,实现多自由度AUV的精确控制。相较于传统的固定控制器,自适应控制器能够更好地适应不同的工作环境和干扰情况,提高控制系统的稳定性和鲁棒性。

  2. 抗干扰性强:该算法通过抗干扰补偿器对水下环境的干扰进行补偿,能够有效地应对水流、深度、海浪等因素对多自由度AUV运动控制的影响,提高控制系统的鲁棒性。抗干扰补偿器能够实时监测和分析水下环境的变化,并根据干扰的程度对控制输入进行调整,以保证AUV的运动控制精度和稳定性。

  3. 精度高:该算法采用模糊控制器对状态变量进行映射,能够实现对多自由度AUV的精确控制,提高控制系统的控制精度。相较于传统的控制器,模糊控制器能够处理数据的模糊性和不确定性,更适合应对水下环境的复杂性和不确定性,提高了控制系统的稳定性和可靠性。

  4. 可扩展性强:该算法具有较强的可扩展性,能够根据不同的应用需求进行调整和扩展,适用于多种水下环境下的AUV运动控制应用。同时,该算法还可以应用于其他领域的自适应控制问题,如机器人控制、飞行器控制等,具有广泛的应用前景和研究价值。

3.MATLAB核心程序

 

.................................................................................figure;
subplot(211);
plot(t1,mod(fai_c,360),'r','linewidth',2);
hold on
plot(t2,mod(fai_co,360),'b','linewidth',2);
hold on
plot(t1(1:end),faiback(1:end),'g','linewidth',2);
grid on
legend('fai c','fai co');
xlabel('t/s');
ylabel('fai');load fai_bs.mat
t3=ans.Time;
fai_bs=ans.Data;
subplot(212);
plot(t3(50:end),fai_bs(50:end),'k','linewidth',2);
grid on
legend('fai bs');
xlabel('t/s');
ylabel('fai');load theta_c.mat
t1=ans.Time;
theta_c=ans.Data;load theta_co.mat
t2=ans.Time;
theta_co=ans.Data;figure;
subplot(211);
plot(t1,theta_c,'r','linewidth',2);
hold on
plot(t2,theta_co,'b','linewidth',2);
grid on
legend('theta c','theta co');
xlabel('t/s');
ylabel('theta');
load theta_bs.mat
t3=ans.Time;
theta_bs=ans.Data;
subplot(212);
plot(t3(50:end),theta_bs(50:end),'k','linewidth',2);
grid on
legend('theta bs');
xlabel('t/s');
ylabel('theta');
axis([0,200,-3,3]);load u_c.mat
t1=ans.Time;
u_c=ans.Data;load u_co.mat
t2=ans.Time;
u_co=ans.Data;figure;
subplot(211);
plot(t1,u_c,'r','linewidth',2);
hold on
plot(t2,u_co,'b','linewidth',2);
grid on
legend('u c','u co');
xlabel('t/s');
ylabel('u');load u_bs.mat
t3=ans.Time;
u_bs=ans.Data;
subplot(212);
plot(t3(50:end),u_bs(50:end),'k','linewidth',2);
grid on
legend('u bs');
xlabel('t/s');
ylabel('u');load rc.mat
t1=ans.Time;
rc=ans.Data(:);load rco.mat
t2=ans.Time;
rco=ans.Data(:);t3=ans.Time;
rback=ans.Data(:);figure;
subplot(211);
plot(t1(50:end),rc(50:end),'r','linewidth',2);
hold on
plot(t2(50:end),rco(50:end),'b','linewidth',2);
hold on
plot(t2(50:end),rback(50:end),'g','linewidth',2);
grid on
legend('r c','r co','r');
xlabel('t/s');
ylabel('r');load rbs.mat
t3=ans.Time;
rbs=ans.Data(:);
subplot(212);
plot(t3,rbs,'k','linewidth',2);
grid on
legend('r bs');
xlabel('t/s');
ylabel('r');load qc.mat
t1=ans.Time;
qc=ans.Data(:);load qco.mat
t2=ans.Time;
qco=ans.Data(:);load qback.mat
t3=ans.Time;
qback=ans.Data(:);figure;
subplot(211);
plot(t1(50:end),qc(50:end),'r','linewidth',2);
hold on
plot(t2(50:end),qco(50:end),'b','linewidth',2);
hold on
plot(t3(50:end),qback(50:end),'g','linewidth',2);
grid on
legend('q c','q co','q');
xlabel('t/s');
ylabel('q');
axis([0,200,-6,2]);
load qbs.mat
t3=ans.Time;
qbs=ans.Data(:);
subplot(212);
plot(t3,qbs,'k','linewidth',2);
grid on
legend('q bs');
xlabel('t/s');
ylabel('q');figure;load xe.mat
t1=ans.Time;
xe=ans.Data(:);
subplot(311);
plot(t1(50:end),xe(50:end),'b','linewidth',2);
xlabel('t/s');
ylabel('xe');
load ye.mat
t2=ans.Time;
ye=ans.Data(:);
subplot(312);
plot(t2(50:end),ye(50:end),'b','linewidth',2);
xlabel('t/s');
ylabel('ye');
load ze.mat
t3=ans.Time;
ze=ans.Data(:);
subplot(313);
plot(t3(50:end),ze(50:end),'b','linewidth',2);
xlabel('t/s');
ylabel('ze');Len=length(xe);
%标准路径
s = [14/Len:14/Len:14]';
load XYZ.mat load XX2.mat
x2= ans.Data(:);
load YY2.mat
y2= ans.Data(:);
load ZZ2.mat
z2= ans.Data(:);
figure;
plot3(x,y,z,'r','linewidth',1);
hold on
plot3(x2,y2,z2,'k--','linewidth',1);
hold on
legend('期望路径','滤波反步法路径');
xlabel('X/m');
ylabel('Y/m');
zlabel('Z/m');
grid on
view([130,26]);figure;
plot3(x,y,z,'r','linewidth',1);
hold on
plot3(x2,y2,z2,'k--','linewidth',1);
hold on
legend('期望路径','滤波反步法路径');
xlabel('X/m');
ylabel('Y/m');
zlabel('Z/m');
grid on
view([180,90]);figure;
plot3(x,y,z,'r','linewidth',1);
hold on
plot3(x2,y2,z2,'k--','linewidth',1);
hold on
legend('期望路径','滤波反步法路径');
xlabel('X/m');
ylabel('Y/m');
zlabel('Z/m');
grid on
view([180,0]);figure;load Fu.mat
t1=ans.Time;
Fu=ans.Data(:);
subplot(311);
plot(t1(50:end),Fu(50:end),'b','linewidth',2);grid on
xlabel('t/s');
ylabel('Fu');
load delta_s.mat
t2=ans.Time;
delta_s=ans.Data(:);
subplot(312);
plot(t2(50:end),delta_s(50:end),'b','linewidth',2);grid on
xlabel('t/s');
ylabel('delta_s');
load delta_r.mat
t3=ans.Time;
delta_r=ans.Data(:);
subplot(313);
plot(t3(50:end),delta_r(50:end),'b','linewidth',2);grid on
xlabel('t/s');
ylabel('delta_r');figure;load uback.mat
t1=ans.Time;
uback=ans.Data(:);
subplot(311);
plot(t1(50:end),uback(50:end),'b','linewidth',2);
xlabel('t/s');
ylabel('u');
grid on
load vback.mat
t2=ans.Time;
vback=ans.Data(:);
subplot(312);
plot(t2(50:end),vback(50:end),'b','linewidth',2);
xlabel('t/s');
ylabel('v');
grid on
load wback.mat
t3=ans.Time;
wback=ans.Data(:);
subplot(313);
plot(t3(50:end),wback(50:end),'b','linewidth',2);
xlabel('t/s');
ylabel('w');
grid onfigure;load faiback.mat
t1=ans.Time;
faiback=ans.Data(:);
subplot(211);
plot(t1(1:end),faiback(1:end),'b','linewidth',2);
xlabel('t/s');
ylabel('fai');
grid onload thetaback.mat
t2=ans.Time;
thetaback=ans.Data(:);
subplot(212);
plot(t2(1:end),thetaback(1:end),'b','linewidth',2);
xlabel('t/s');
ylabel('theta');
grid on
axis([0,200,0,360]);
08_076_m

4.完整算法代码文件

V

这篇关于m基于万能逼近原理自适应模糊控制算法的多自由度AUV运动控制抗干扰补偿simulink仿真的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/705335

相关文章

Spring Security 基于表达式的权限控制

前言 spring security 3.0已经可以使用spring el表达式来控制授权,允许在表达式中使用复杂的布尔逻辑来控制访问的权限。 常见的表达式 Spring Security可用表达式对象的基类是SecurityExpressionRoot。 表达式描述hasRole([role])用户拥有制定的角色时返回true (Spring security默认会带有ROLE_前缀),去

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

康拓展开(hash算法中会用到)

康拓展开是一个全排列到一个自然数的双射(也就是某个全排列与某个自然数一一对应) 公式: X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! 其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。(a[i]在不同应用中的含义不同); 典型应用: 计算当前排列在所有由小到大全排列中的顺序,也就是说求当前排列是第

深入探索协同过滤:从原理到推荐模块案例

文章目录 前言一、协同过滤1. 基于用户的协同过滤(UserCF)2. 基于物品的协同过滤(ItemCF)3. 相似度计算方法 二、相似度计算方法1. 欧氏距离2. 皮尔逊相关系数3. 杰卡德相似系数4. 余弦相似度 三、推荐模块案例1.基于文章的协同过滤推荐功能2.基于用户的协同过滤推荐功能 前言     在信息过载的时代,推荐系统成为连接用户与内容的桥梁。本文聚焦于

csu 1446 Problem J Modified LCS (扩展欧几里得算法的简单应用)

这是一道扩展欧几里得算法的简单应用题,这题是在湖南多校训练赛中队友ac的一道题,在比赛之后请教了队友,然后自己把它a掉 这也是自己独自做扩展欧几里得算法的题目 题意:把题意转变下就变成了:求d1*x - d2*y = f2 - f1的解,很明显用exgcd来解 下面介绍一下exgcd的一些知识点:求ax + by = c的解 一、首先求ax + by = gcd(a,b)的解 这个

综合安防管理平台LntonAIServer视频监控汇聚抖动检测算法优势

LntonAIServer视频质量诊断功能中的抖动检测是一个专门针对视频稳定性进行分析的功能。抖动通常是指视频帧之间的不必要运动,这种运动可能是由于摄像机的移动、传输中的错误或编解码问题导致的。抖动检测对于确保视频内容的平滑性和观看体验至关重要。 优势 1. 提高图像质量 - 清晰度提升:减少抖动,提高图像的清晰度和细节表现力,使得监控画面更加真实可信。 - 细节增强:在低光条件下,抖

【数据结构】——原来排序算法搞懂这些就行,轻松拿捏

前言:快速排序的实现最重要的是找基准值,下面让我们来了解如何实现找基准值 基准值的注释:在快排的过程中,每一次我们要取一个元素作为枢纽值,以这个数字来将序列划分为两部分。 在此我们采用三数取中法,也就是取左端、中间、右端三个数,然后进行排序,将中间数作为枢纽值。 快速排序实现主框架: //快速排序 void QuickSort(int* arr, int left, int rig

hdu4407(容斥原理)

题意:给一串数字1,2,......n,两个操作:1、修改第k个数字,2、查询区间[l,r]中与n互质的数之和。 解题思路:咱一看,像线段树,但是如果用线段树做,那么每个区间一定要记录所有的素因子,这样会超内存。然后我就做不来了。后来看了题解,原来是用容斥原理来做的。还记得这道题目吗?求区间[1,r]中与p互质的数的个数,如果不会的话就先去做那题吧。现在这题是求区间[l,r]中与n互质的数的和

poj 3974 and hdu 3068 最长回文串的O(n)解法(Manacher算法)

求一段字符串中的最长回文串。 因为数据量比较大,用原来的O(n^2)会爆。 小白上的O(n^2)解法代码:TLE啦~ #include<stdio.h>#include<string.h>const int Maxn = 1000000;char s[Maxn];int main(){char e[] = {"END"};while(scanf("%s", s) != EO

秋招最新大模型算法面试,熬夜都要肝完它

💥大家在面试大模型LLM这个板块的时候,不知道面试完会不会复盘、总结,做笔记的习惯,这份大模型算法岗面试八股笔记也帮助不少人拿到过offer ✨对于面试大模型算法工程师会有一定的帮助,都附有完整答案,熬夜也要看完,祝大家一臂之力 这份《大模型算法工程师面试题》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费