英伟达官方源Jetson Xavier NX安装Ubuntu20.04,配置CUDA,cuDNN,Pytorch等环境教程(基于NVIDIA官方教程,理论适用其它Jetson设备)

本文主要是介绍英伟达官方源Jetson Xavier NX安装Ubuntu20.04,配置CUDA,cuDNN,Pytorch等环境教程(基于NVIDIA官方教程,理论适用其它Jetson设备),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、准备工作

硬件:Jetson Xavier NX开发板(笔者购入为带128g内存条的EMMC版)、跳线帽(杜邦线)、microUSB转USB数据线、电源线

软件:Ubuntu host主机(可运行Ubuntu的虚拟机/双系统)、NVIDIA SDK MANAGER(下载地址:NVIDIA SDK Manager | NVIDIA Developer)。

在Ubuntu主机里安装sdkmanager,命令如下,版本不同则tab补齐安装。

sudo apt install ./sdkmanager_1.6.0-8170_amd64.deb

硬件准备

用杜邦线或者跳线帽将Xavier NX第三个引脚FC_REC与第二/四引脚GND短接(上电后会进入recovery模式),并插上电源给板子供电。然后通过NX的microusb接口连接host主机的USB接口(没有的可以通过扩展坞转接),主机识别到串口后连接到虚拟机内(若是双系统无需此步骤),不要勾选记住此选择,以防之后无法连接到主机。

软件准备

TIPS:在进行安装下载前建议换国内源(常用的比如阿里,清华,中科大源)以加快jetpack及CUDA组件下载速度

打开一个终端,输入sdkmanager,启动sdkmanager(或直接点击sdkmanager图标启动)

sdkmanager

登录 NVIDIA 账号(没有的话自己申请一个),选择登录方式为Developer账户(跳转到NVIDIA网页登录确认,stay logged in之后不需要再登录)。如果sdkmanager提示更新点击yes更新即可,对于如下系统不符合要求的警告不需要管yes继续即可。

二、开始刷机

STEP 01

弹窗选择板子的型号:Jetson Xavier NX(如果没有弹出就是usb没插好,使用lsusb命令查看是否有名称带nvidia的设备),也可以在下图中Target Hardware里刷新后自动读取。

安装时注意选择JetPack5.0.2版本(对应安装ubuntu20.04版本)其他的JetPack版本和ubuntu,CUDA,cudda的对应关系可在英伟达官网查看https://developer.nvidia.com/embedded/jetpack-archive,如多数教程选择的Ubuntu18.04就对应jetpack4.5.1版本。

安装成功后通过以下命令查看本机jetpack版本ubuntu版本则可通过设置-详细信息查看。

sudo apt-cache show nvidia-jetpack

取消勾选第四行里的DeepStream(用于构建智能视频分析(IVA)管道的加速人工智能框架,笔者用不到所以不装)、取消勾选Host Machine(这个是为主机下载安装文件的,若是想在主机上安装 nivida 软件,勾选这个,实际上不必),而后点击 continue,进入下一步。

STEP 02

注意!这里我们先只安装Jetpack系统,等将系统迁移到SSD上面后,再进行其他SDK组件的安装(jetson Xavier NX系统自带内存16g不足以安装其他SDK组件)

勾选左下角接收协议后才能点击continue进入下一步下载安装!系统剩余空间如果大于17GB即可继续下载安装jepack系统。如果提醒disk内存不够或还需要xxMB,无需担心(文件下载到主机的路径无需更改,为保证后续组件安装,建议在开始使用SDKmanager前,主机留足40G以上的内存

键入HOST主机的ubuntu系统密码后点击ok即可下载

STEP03

下载过程中如果出现检测网络,apt仓库未成功的问题无需担心,skip通过即可(通常是网络问题,只要保证download下载的进度条在前进就说明下得动,下的速度快慢就是另一回事了)整个下载过程视网络状况而定,而烧录系统过程则需要30-60分钟。点击DETAILS旁边的TERMINAL即可查看NX内具体安装命令和报错提示。

当下载完成要刷新目标设备时,SDK Manager 会打开一个对话框。提示会提供有关设备以使其准备就绪以进行闪烁的说明:其中,将启动方式更改为手动输入并创建 Jetson 的用户名和密码。(后续安装SDK组件过程中选择自动)

点击箭头展开可以看到安装的软件包细节,当出现OS image ready时可以拔掉跳线帽,但电脑与NX连接的USB不要拔!(整个烧录过程必须保证电脑与NX保持连接以防烧录失败)

等待系统烧写完成,时间稍久,Jetson NX会重启,如果接上显示屏就会看到ubuntu登录界面,无外接显示屏看进度条和听风扇转速就知道了。(此过程中可能会提醒烧写超时无需紧张继续即可,如果报错可以关掉SDKmanager重新烧录,一般电脑和NX的USB连线全程保持不断开就没问题)开机后连上键鼠,启动ubuntu系统后连接wifi、添加中文输入法、设置快捷键等基本操作。

三、插入内存条并设置SSD为首启动方式(扩容)

1、格式化SSD:

由于官方自带内存仅为16G,厂家一般提供SSD内存条用以扩容。插上内存条SSD后,在NX启动的Ubuntu系统中,打开disks软件,点击右上角菜单,将固态硬盘格式化。无需更改选项,直接格式化。然后点击左下角+号继续分区。

点击加号开始分区,增加16GB的空间作为SWAP交换空间(也可用gparted实现)重命名后创建。

效果如图所示:

2、将root等信息从SD卡复制到SSD:

首先,从git上复制最新rootOnNVMe项目到home目录下(通过U盘拷贝也可以)。

git clone https://github.com/jetsonhacks/rootOnNVMe.git
cd rootOnNVMe

然后执行下面的脚本,将根源文件复制到SSD

./copy-rootfs-ssd.sh

启动从SSD启动的脚本

./setup-service.sh

然后重启开机后就会发现内存变为了110G

四、安装CUDA,cuDNN等组件

接下来开始安装CUDA等其他组件,拔掉跳线帽,USB别拔!HOST主机继续打开sdk manager。确定jetpack版本号,点击continue进入下一步。

必须保证jetpack版本与刷机的版本一致,否则安装会失败,如果忘记了可通过以下命令查看本机jetpack版本。

sudo apt-cache show nvidia-jetpack`

取消勾选系统,只勾选组件,左下角同意协议后点击continue进入下一步(不要勾选稍后安装)

这里我们通过SDKmanager自动安装与jetpack版本对应的CUDA、cuDNN、OpenCV(不支持CUDA加速的版本)、VPI等必须的组件。

如果出现问题无法安装我们可以在下载路径找到下载的安装包,通过u盘拷贝到NX上安装,手动安装的系列问题读者可自行搜索。

输入主机ubuntu密码后开始下载,弹出以下页面,IP 地址默认是 192.168.55.1,选择USB选项(如果后续刷机失败可以尝试更改 IP 为局域网地址),键入设置的用户名和密码。

如果NX板没有完成初始化系统并自动重启,这里可能会有红字报错:显示没有连接上。所以请等待NX板完成初始化并重启后再进行SDK Manager 这边的安装。

进入安装、时间可能会比较久。

安装pip3

sudo apt install python3-pip

安装jtop工具(英伟达官方查看jetson系列环境的软件)

sudo -H pip3 install jetson-stats==4.0.0rc2

安装后需要重启,然后启动jtop,通过左右键移动到info页面查看系统安装的组件信息

sudo jtop

初始环境搭建完成,接下来卸载原来的OpenCV并重装OpenCV4.5.4

五、重装支持CUDA加速的OpenCV

1、卸载默认OpenCV

由上图可知默认的 OpenCV 版本是不带 CUDA 加速的,无法充分利用 NX 的 GPU 性能,所以需要卸载重装支持CUDA加速的版本,卸载命令如下:

sudo apt purge libOpenCV*
sudo apt autoremove
sudo apt update

2、安装依赖库

在安装依赖之前建议换源,打开source.list文件,编辑前可以先把原来的内容复制后备份文档。

   sudo gedit /etc/apt/sources.list

更换成清华源,也可以更换成阿里源/中科大等常用源,注意jepack5.02对于的是ubuntu20.04版本所以是focal而不是bionic(对应ubuntu18.04)。其中为了安装旧的libpng12需要加入xenial (ubuntu16.04)的源

   deb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ focal-updates main restricted universe multiversedeb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ focal-updates main restricted universe multiversedeb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ focal-security main restricted universe multiversedeb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ focal-security main restricted universe multiversedeb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ focal-backports main restricted universe multiversedeb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ focal-backports main restricted universe multiversedeb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ focal main universe restricteddeb-src http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ focal main universe restricteddeb http://mirrors.tuna.tsinghua.edu.cn/ubuntu-ports/ xenial main multiverse restricted universe

然后安装依赖。

sudo apt install -y build-essential checkinstall cmake pkg-config yasm git gfortran
sudo apt update
sudo apt install -y libjpeg8-dev libjasper-dev libpng-dev libtiff5-dev libavcodec-dev libavformat-dev libswscale-dev libdc1394-22-dev libxine2-dev libv4l-dev
sudo apt install -y libgstreamer1.0-dev libgstreamer-plugins-base1.0-dev libgtk2.0-dev libtbb-dev libatlas-base-dev libfaac-dev libmp3lame-dev libtheora-dev libvorbis-dev libxvidcore-dev libopencore-amrnb-dev libopencore-amrwb-dev x264 v4l-utils
sudo apt install python2-dev python3-dev python-numpy python3-numpy libtbb2 libtbb-dev libjpeg-dev libpng-dev libtiff-dev libjasper-dev libdc1394-22-dev

可能会出现问题的是libjasper-dev依赖,通过以下命令解决。

sudo apt install libjasper1 libjasper-dev

3、下载 OpenCV 和 opencv_contrib 源码

前往官方仓库https://github.com/opencv下载合适版本的OpenCV和opencv_contrib源码,笔者在装机时选择的是4.5.3版本,而安装的jepack系统自带OpenCV版本是4.5.4,不建议使用与jepack自带OpenCV差距过大的版本。

下载解压后可以将两者放在主目录下,将opencv_contrib-4.5.3移动到 OpenCV-4.5.3目录下,打开OpenCV-4.5.3目录新建build文件夹用以编译。

cd opencv-4.5.3
mkdir build
cd build

4、编译和安装 OpenCV

在cmake编译之前,手动下载cmake过程中缺失的依赖https://files.cnblogs.com/files/arxive/boostdesc_bgm.i%2Cvgg_generated_48.i%E7%AD%89.rar(建议Windows下载解压成zip格式通过u盘拷入,ubuntu系统默认不支持rar格式)

解压后直接拷贝以下文件名的源码,放在opencv_contrib/modules/xfeatures2d/src/ 路径下即可。

boostdesc_bgm.i
boostdesc_bgm_bi.i
boostdesc_bgm_hd.i
boostdesc_lbgm.i
boostdesc_binboost_064.i
boostdesc_binboost_128.i
boostdesc_binboost_256.i
vgg_generated_120.i
vgg_generated_64.i
vgg_generated_80.i
vgg_generated_48.i

然后打开build文件夹,执行的 cmake命令如下:

cmake \
-D WITH_CUDA=ON \
-D CUDA_ARCH_BIN="7.2" \
-D WITH_cuDNN=ON \
-D OPENCV_DNN_CUDA=ON  \
-D cuDNN_VERSION='8.4' \
-D cuDNN_INCLUDE_DIR='/usr/include/' \
-D CUDA_ARCH_PTX="" \
-D OPENCV_EXTRA_MODULES_PATH=../opencv_contrib-4.5.3/modules \
-D WITH_GSTREAMER=ON \
-D WITH_LIBV4L=ON  \
-D BUILD_opencv_python3=ON \
-D BUILD_TESTS=OFF \
-D BUILD_PERF_TESTS=OFF \
-D BUILD_EXAMPLES=OFF \
-D CMAKE_BUILD_TYPE=RELEASE \
-D CMAKE_INSTALL_PREFIX=/usr/local \
..   

其中-D CUDA_TOOLKIT_ROOT_DIR的目录CUDA版本要和本机对应,-D CUDA_ARCH_BIN和-D CUDA_ARCH_PTX可以通过jtop命令查看,-D OPENCV_EXTRA_MODULES_PATH建议填写opencv_contrib里modules的绝对路径,-D CMAKE_INSTALL_PREFIX为安装路径。

然后进行编译安装,全开NX的12线程仍然需要编译较长时间。

sudo make -j12
sudo make install

安装成功后可以通过jtop指令查看,如图所示已安装好支持CUDA加速的OpenCV4.5.3版本

六、Pytorch的安装

下载jetpack专用的Pytorch源码,资源由NVIDIA提供在官方论坛上,含最新完整安装、验证教程。

https://forums.developer.nvidia.com/t/pytorch-for-jetson-version-1-11-now-available/72048

注意Pytorch与jetpack、torchversion的版本对应关系, PyTorch v1.11.0及以上版本只支持jetpack5.x的版本。

然后前往GitHub仓库下载对应版本的torchversion,接着按照上图的教程安装。

https://github.com/pytorch/vision

这里列举出官方教程所示的命令,可提供以下的wegt命令下载Pytorch,然后安装依赖并安装。

wget https://nvidia.box.com/shared/static/p57jwntv436lfrd78inwl7iml6p13fzh.whl -O torch-1.12.0-cp36-cp36m-linux_aarch64.whl
sudo apt-get install python3-pip libopenblas-base libopenmpi-dev libomp-dev
pip3 install Cython
pip3 install numpy torch-1.12.0-cp36-cp36m-linux_aarch64.whl

基于Python3安装torchvision的官方命令如下,需要自行根据Pytorch版本填写torchvision版本。

$ sudo apt-get install libjpeg-dev zlib1g-dev libpython3-dev libavcodec-dev libavformat-dev libswscale-dev
$ git clone --branch <version> https://github.com/pytorch/vision torchvision   # see below for version of torchvision to download
$ cd torchvision
$ export BUILD_VERSION=0.x.0  # where 0.x.0 is the torchvision version  
$ python3 setup.py install --user
$ cd ../  # attempting to load torchvision from build dir will result in import error

七、小结

最终在Jetson Xavier NX(emmc版)上安装了Ubuntu20.04系统,利用内存条扩容并设置SSD首启动,成功配置了CUDA 11.4,cuDNN8.4.1,PyTorch v1.12.0,支持CUDA加速的OpenCV4.5.3等环境。大部分流程采用官方源和官方教程,如果将来英伟达官方更新仍然可以适用,希望这个教程可以帮到大家。

这篇关于英伟达官方源Jetson Xavier NX安装Ubuntu20.04,配置CUDA,cuDNN,Pytorch等环境教程(基于NVIDIA官方教程,理论适用其它Jetson设备)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/613562

相关文章

python管理工具之conda安装部署及使用详解

《python管理工具之conda安装部署及使用详解》这篇文章详细介绍了如何安装和使用conda来管理Python环境,它涵盖了从安装部署、镜像源配置到具体的conda使用方法,包括创建、激活、安装包... 目录pytpshheraerUhon管理工具:conda部署+使用一、安装部署1、 下载2、 安装3

Window Server创建2台服务器的故障转移群集的图文教程

《WindowServer创建2台服务器的故障转移群集的图文教程》本文主要介绍了在WindowsServer系统上创建一个包含两台成员服务器的故障转移群集,文中通过图文示例介绍的非常详细,对大家的... 目录一、 准备条件二、在ServerB安装故障转移群集三、在ServerC安装故障转移群集,操作与Ser

windos server2022的配置故障转移服务的图文教程

《windosserver2022的配置故障转移服务的图文教程》本文主要介绍了windosserver2022的配置故障转移服务的图文教程,以确保服务和应用程序的连续性和可用性,文中通过图文介绍的非... 目录准备环境:步骤故障转移群集是 Windows Server 2022 中提供的一种功能,用于在多个

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

Mybatis官方生成器的使用方式

《Mybatis官方生成器的使用方式》本文详细介绍了MyBatisGenerator(MBG)的使用方法,通过实际代码示例展示了如何配置Maven插件来自动化生成MyBatis项目所需的实体类、Map... 目录1. MyBATis Generator 简介2. MyBatis Generator 的功能3

关于Maven中pom.xml文件配置详解

《关于Maven中pom.xml文件配置详解》pom.xml是Maven项目的核心配置文件,它描述了项目的结构、依赖关系、构建配置等信息,通过合理配置pom.xml,可以提高项目的可维护性和构建效率... 目录1. POM文件的基本结构1.1 项目基本信息2. 项目属性2.1 引用属性3. 项目依赖4. 构

龙蜥操作系统Anolis OS-23.x安装配置图解教程(保姆级)

《龙蜥操作系统AnolisOS-23.x安装配置图解教程(保姆级)》:本文主要介绍了安装和配置AnolisOS23.2系统,包括分区、软件选择、设置root密码、网络配置、主机名设置和禁用SELinux的步骤,详细内容请阅读本文,希望能对你有所帮助... ‌AnolisOS‌是由阿里云推出的开源操作系统,旨

PyTorch使用教程之Tensor包详解

《PyTorch使用教程之Tensor包详解》这篇文章介绍了PyTorch中的张量(Tensor)数据结构,包括张量的数据类型、初始化、常用操作、属性等,张量是PyTorch框架中的核心数据结构,支持... 目录1、张量Tensor2、数据类型3、初始化(构造张量)4、常用操作5、常用属性5.1 存储(st

Java中的Opencv简介与开发环境部署方法

《Java中的Opencv简介与开发环境部署方法》OpenCV是一个开源的计算机视觉和图像处理库,提供了丰富的图像处理算法和工具,它支持多种图像处理和计算机视觉算法,可以用于物体识别与跟踪、图像分割与... 目录1.Opencv简介Opencv的应用2.Java使用OpenCV进行图像操作opencv安装j

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20