随机森林回归(Random Forest Regression)

2024-01-12 09:20

本文主要是介绍随机森林回归(Random Forest Regression),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

什么是机器学习

随机森林回归(Random Forest Regression)是一种基于集成学习的回归算法,它通过整合多个决策树的预测结果来提高模型的性能和鲁棒性。随机森林是一种Bagging(Bootstrap Aggregating)方法,它通过对训练数据进行有放回的随机抽样(bootstrap抽样)构建多个决策树,并且在每个决策树的节点上使用随机特征子集来进行分裂。

以下是随机森林回归的主要特点和步骤:

  1. 数据准备: 与决策树回归类似,随机森林回归也需要准备包含特征和目标变量的训练数据集。
  2. 随机抽样: 对训练数据进行有放回的随机抽样(bootstrap抽样)来创建多个训练数据的子集,用于每个决策树的训练。
  3. 随机特征选择: 对于每个决策树的每个节点,随机选择一个特征子集,然后基于选定的特征进行分裂。这有助于降低各个决策树之间的相关性。
  4. 树的构建: 对于每个子集,使用随机特征子集构建一个决策树。这可以是通过对数据递归划分来完成,直到达到停止条件,例如树的深度达到最大深度或节点包含的样本数小于某个阈值。
  5. 预测: 对于新的输入数据,将其传递给每个决策树,得到多个预测结果。最终的预测结果是所有决策树预测结果的平均值。
  6. 模型评估: 使用测试数据集对整个随机森林模型进行评估,可以使用回归性能指标,如均方误差(Mean Squared Error)等。

随机森林回归具有以下优点:

  1. 鲁棒性: 由于随机森林是通过多个决策树的集成,它对于噪声和过拟合的鲁棒性较强。
  2. 高性能: 随机森林通常能够在不需要过多调整参数的情况下表现出色。
  3. 特征重要性: 随机森林可以提供每个特征的重要性度量,这对于特征选择和解释模型非常有帮助。

在实践中,可以使用Scikit-Learn库中的RandomForestRegressor类来实现随机森林回归。以下是一个简单的代码示例:

from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import numpy as np
import matplotlib.pyplot as plt# 创建示例数据集
np.random.seed(42)
X = np.sort(5 * np.random.rand(80, 1), axis=0)
y = np.sin(X).ravel() + np.random.normal(0, 0.1, X.shape[0])# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)# 创建随机森林回归模型
rf_regressor = RandomForestRegressor(n_estimators=100, random_state=42)# 在训练集上训练模型
rf_regressor.fit(X_train, y_train)# 在测试集上进行预测
y_pred = rf_regressor.predict(X_test)# 评估模型性能
mse = mean_squared_error(y_test, y_pred)
print(f"均方误差(MSE): {mse}")# 可视化结果
plt.figure(figsize=(8, 6))
plt.scatter(X, y, s=20, edgecolor="black", c="darkorange", label="data")
plt.plot(X_test, y_pred, color="cornflowerblue", label="prediction")
plt.xlabel("data")
plt.ylabel("target")
plt.title("Random Forest Regression")
plt.legend()
plt.show()

这个示例中,RandomForestRegressor类被用来创建随机森林回归模型,并使用训练数据进行训练。最后,评估模型性能并通过图形显示实际数据点和模型预测结果。

这篇关于随机森林回归(Random Forest Regression)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/597407

相关文章

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

使用C#如何创建人名或其他物体随机分组

《使用C#如何创建人名或其他物体随机分组》文章描述了一个随机分配人员到多个团队的代码示例,包括将人员列表随机化并根据组数分配到不同组,最后按组号排序显示结果... 目录C#创建人名或其他物体随机分组此示例使用以下代码将人员分配到组代码首先将lstPeople ListBox总结C#创建人名或其他物体随机分组

✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

1️⃣线性回归(linear regression) f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b​(x)=wx+b 🎈A linear regression model predicting house prices: 如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^

perl的学习记录——仿真regression

1 记录的背景 之前只知道有这个强大语言的存在,但一直侥幸自己应该不会用到它,所以一直没有开始学习。然而人生这么长,怎就确定自己不会用到呢? 这次要搭建一个可以自动跑完所有case并且打印每个case的pass信息到指定的文件中。从而减轻手动跑仿真,手动查看log信息的重复无效低质量的操作。下面简单记录下自己的思路并贴出自己的代码,方便自己以后使用和修正。 2 思路整理 作为一个IC d

AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理 引言 在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)

一、学习内容 1. 向量自回归模型 (VAR) 的基本概念与应用 向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。 VAR 模型的一般形式为: 其中: ​ 是时间  的变量向量。 是常数向量。​ 是每个时间滞后的回归系数矩阵。​ 是误差项向量,假

AI学习指南深度学习篇-带动量的随机梯度下降法简介

AI学习指南深度学习篇 - 带动量的随机梯度下降法简介 引言 在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。 在本篇文章中,我们将深入探讨带动量的随

深度学习与大模型第3课:线性回归模型的构建与训练

文章目录 使用Python实现线性回归:从基础到scikit-learn1. 环境准备2. 数据准备和可视化3. 使用numpy实现线性回归4. 使用模型进行预测5. 可视化预测结果6. 使用scikit-learn实现线性回归7. 梯度下降法8. 随机梯度下降和小批量梯度下降9. 比较不同的梯度下降方法总结 使用Python实现线性回归:从基础到scikit-learn 线性

【python因果推断库11】工具变量回归与使用 pymc 验证工具变量4

目录  Wald 估计与简单控制回归的比较 CausalPy 和 多变量模型 感兴趣的系数 复杂化工具变量公式  Wald 估计与简单控制回归的比较 但现在我们可以将这个估计与仅包含教育作为控制变量的简单回归进行比较。 naive_reg_model, idata_reg = make_reg_model(covariate_df.assign(education=df[