简介 在上一节中,我们探讨了Bagging方法,并了解到通过构建多个树模型来减少方差是有效的。然而,Bagging方法中树与树之间仍然可能存在一定的相关性,降低了方差减少的效果。为了解决这个问题,我们引入了随机森林(Random Forests),这是一种基于Bagging的增强技术,通过在每个树的每个分割点上随机选择特征来进一步减少树之间的相关性。 1. Out of Bag
机器学习分类算法 朴素贝叶斯 条件概率公式 P ( A ∣ B ) = P ( A ∩ B ) P ( B ) P(A \mid B)=\frac{P(A \cap B)}{P(B)} P(A∣B)=P(B)P(A∩B) 在B条件发生的情况下,A发生的概率。 事件 A 发生的概率定义为事件 A 发生的情况数除以所有可能情况的总数。 P(A) =(事件 A 发生的情况数)/(所有可能情况