基于Python的机器学习系列(14):随机森林(Random Forests)

2024-08-28 09:44

本文主要是介绍基于Python的机器学习系列(14):随机森林(Random Forests),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

简介

        在上一节中,我们探讨了Bagging方法,并了解到通过构建多个树模型来减少方差是有效的。然而,Bagging方法中树与树之间仍然可能存在一定的相关性,降低了方差减少的效果。为了解决这个问题,我们引入了随机森林(Random Forests),这是一种基于Bagging的增强技术,通过在每个树的每个分割点上随机选择特征来进一步减少树之间的相关性。

1. Out of Bag (OOB) 评价

        在Bagging方法中,每棵树仅看到训练数据的一个子集。未被某棵树看到的数据被称为“袋外”(Out of Bag, OOB)数据。由于OOB数据对这棵树来说是完全陌生的,我们可以将其视为一种验证集,用来评估模型的性能。具体来说,在训练每棵树后,我们可以使用这棵树的OOB数据来测试其准确性,然后平均所有树的OOB准确性,得到整体模型的OOB评价分数。

2. 随机特征子集

        随机森林通过Bagging方法构建,但在每棵树的每个分割点上,只考虑特定数量的随机特征子集进行分裂。这样可以进一步去除树之间的相关性。通常,分类树中使用的随机特征子集大小为特征总数的平方根。

3. 特征重要性

        随机森林中的每棵决策树都可以计算每个特征对减少不纯度的贡献,并对所有树中的特征重要性进行平均,得到最终的特征重要性排序。这种方法可以帮助我们理解哪些特征在模型中最为重要。

4. 从零开始的实现

代码示例

# 引入必要的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report# 加载数据集
iris = load_iris()
X = iris.data
y = iris.target# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, shuffle=True, random_state=42)# 实现RandomForest类
import random, math
from sklearn.tree import DecisionTreeClassifier
from scipy import statsclass RandomForest:def __init__(self, B, bootstrap_ratio, with_no_replacement=True):self.B = Bself.bootstrap_ratio = bootstrap_ratioself.with_no_replacement = with_no_replacementself.tree_params = {'max_depth': 2, 'max_features': 'sqrt'}self.models = [DecisionTreeClassifier(**self.tree_params) for _ in range(B)]def fit(self, X, y):m, n = X.shapesample_size = int(self.bootstrap_ratio * len(X))xsamples = np.zeros((self.B, sample_size, n))ysamples = np.zeros((self.B, sample_size))xsamples_oob = []ysamples_oob = []for i in range(self.B):oob_idx = []idxes = []for j in range(sample_size):idx = random.randrange(m)if (self.with_no_replacement):while idx in idxes:idx = random.randrange(m)idxes.append(idx)oob_idx.append(idx)xsamples[i, j, :] = X[idx]ysamples[i, j] = y[idx]mask = np.zeros((m), dtype=bool)mask[oob_idx] = Truexsamples_oob.append(X[~mask])ysamples_oob.append(y[~mask])oob_score = 0print("======Out of bag score for each tree======")for i, model in enumerate(self.models):_X = xsamples[i]_y = ysamples[i]model.fit(_X, _y)_X_test = np.asarray(xsamples_oob[i])_y_test = np.asarray(ysamples_oob[i])yhat = model.predict(_X_test)oob_score += accuracy_score(_y_test, yhat)print(f"Tree {i}", accuracy_score(_y_test, yhat))self.avg_oob_score = oob_score / len(self.models)print("======Average out of bag score======")print(self.avg_oob_score)def predict(self, X):predictions = np.zeros((self.B, X.shape[0]))for i, model in enumerate(self.models):yhat = model.predict(X)predictions[i, :] = yhatreturn stats.mode(predictions)[0][0]model = RandomForest(B=5, bootstrap_ratio=0.8)
model.fit(X_train, y_train)
yhat = model.predict(X_test)
print(classification_report(y_test, yhat))

5. Sklearn 实现

# 使用Sklearn中的RandomForestClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import GridSearchCVparam_grid = {"n_estimators": [10, 50, 100], "criterion": ["gini", "entropy"],"max_depth": np.arange(1, 10)}
model = RandomForestClassifier()grid = GridSearchCV(model, param_grid, refit=True)
grid.fit(X_train, y_train)print(grid.best_params_)yhat = grid.predict(X_test)print(classification_report(y_test, yhat))

使用随机森林的时机

优点:

  • 通过投票机制减少过拟合
  • 可以并行计算,提高计算效率
  • 适用于高维数据
  • 提供特征重要性评估
  • 能够处理缺失数据
  • 适用于不平衡数据集
  • 能够解决分类和回归问题

缺点:

  • 对回归问题效果不如分类问题
  • 随机森林模型较为复杂,解释性较差
  • 对稀有特征或结果不敏感
  • 在某些情况下,更多的样本并不会提高准确性

        在处理结构化数据时,如果你追求高准确性而不太关心可解释性,随机森林是一个很好的选择。

结语

        随机森林作为一种集成学习方法,通过结合多棵决策树并进行投票或平均来提高模型的准确性和鲁棒性。它不仅能有效地减少单一决策树容易出现的过拟合问题,还能够处理高维数据和不平衡数据集,提供有价值的特征重要性评估。尽管随机森林在某些情况下可能缺乏深度解释性,但其强大的预测能力使其在实际应用中广受欢迎。总之,随机森林是一种灵活且强大的工具,尤其适合在对解释性要求不高的情况下追求高准确性的任务。

如果你觉得这篇博文对你有帮助,请点赞、收藏、关注我,并且可以打赏支持我!

欢迎关注我的后续博文,我将分享更多关于人工智能、自然语言处理和计算机视觉的精彩内容。

谢谢大家的支持!

这篇关于基于Python的机器学习系列(14):随机森林(Random Forests)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1114409

相关文章

Python中你不知道的gzip高级用法分享

《Python中你不知道的gzip高级用法分享》在当今大数据时代,数据存储和传输成本已成为每个开发者必须考虑的问题,Python内置的gzip模块提供了一种简单高效的解决方案,下面小编就来和大家详细讲... 目录前言:为什么数据压缩如此重要1. gzip 模块基础介绍2. 基本压缩与解压缩操作2.1 压缩文

Python设置Cookie永不超时的详细指南

《Python设置Cookie永不超时的详细指南》Cookie是一种存储在用户浏览器中的小型数据片段,用于记录用户的登录状态、偏好设置等信息,下面小编就来和大家详细讲讲Python如何设置Cookie... 目录一、Cookie的作用与重要性二、Cookie过期的原因三、实现Cookie永不超时的方法(一)

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客

Python函数作用域示例详解

《Python函数作用域示例详解》本文介绍了Python中的LEGB作用域规则,详细解析了变量查找的四个层级,通过具体代码示例,展示了各层级的变量访问规则和特性,对python函数作用域相关知识感兴趣... 目录一、LEGB 规则二、作用域实例2.1 局部作用域(Local)2.2 闭包作用域(Enclos

Python实现对阿里云OSS对象存储的操作详解

《Python实现对阿里云OSS对象存储的操作详解》这篇文章主要为大家详细介绍了Python实现对阿里云OSS对象存储的操作相关知识,包括连接,上传,下载,列举等功能,感兴趣的小伙伴可以了解下... 目录一、直接使用代码二、详细使用1. 环境准备2. 初始化配置3. bucket配置创建4. 文件上传到os

使用Python实现可恢复式多线程下载器

《使用Python实现可恢复式多线程下载器》在数字时代,大文件下载已成为日常操作,本文将手把手教你用Python打造专业级下载器,实现断点续传,多线程加速,速度限制等功能,感兴趣的小伙伴可以了解下... 目录一、智能续传:从崩溃边缘抢救进度二、多线程加速:榨干网络带宽三、速度控制:做网络的好邻居四、终端交互

Python中注释使用方法举例详解

《Python中注释使用方法举例详解》在Python编程语言中注释是必不可少的一部分,它有助于提高代码的可读性和维护性,:本文主要介绍Python中注释使用方法的相关资料,需要的朋友可以参考下... 目录一、前言二、什么是注释?示例:三、单行注释语法:以 China编程# 开头,后面的内容为注释内容示例:示例:四

Python中win32包的安装及常见用途介绍

《Python中win32包的安装及常见用途介绍》在Windows环境下,PythonWin32模块通常随Python安装包一起安装,:本文主要介绍Python中win32包的安装及常见用途的相关... 目录前言主要组件安装方法常见用途1. 操作Windows注册表2. 操作Windows服务3. 窗口操作

Python中re模块结合正则表达式的实际应用案例

《Python中re模块结合正则表达式的实际应用案例》Python中的re模块是用于处理正则表达式的强大工具,正则表达式是一种用来匹配字符串的模式,它可以在文本中搜索和匹配特定的字符串模式,这篇文章主... 目录前言re模块常用函数一、查看文本中是否包含 A 或 B 字符串二、替换多个关键词为统一格式三、提

python常用的正则表达式及作用

《python常用的正则表达式及作用》正则表达式是处理字符串的强大工具,Python通过re模块提供正则表达式支持,本文给大家介绍python常用的正则表达式及作用详解,感兴趣的朋友跟随小编一起看看吧... 目录python常用正则表达式及作用基本匹配模式常用正则表达式示例常用量词边界匹配分组和捕获常用re