机器学习项目——基于机器学习(决策树 随机森林 朴素贝叶斯 SVM KNN XGBoost)的帕金森脑电特征识别研究(代码/报告材料)

本文主要是介绍机器学习项目——基于机器学习(决策树 随机森林 朴素贝叶斯 SVM KNN XGBoost)的帕金森脑电特征识别研究(代码/报告材料),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

完整的论文代码见文章末尾 以下为核心内容和部分结果

问题背景

帕金森病(Parkinson’s Disease, PD)是一种常见的神经退行性疾病,其主要特征是中枢神经系统的多巴胺能神经元逐渐丧失,导致患者出现运动障碍、震颤、僵硬等症状。然而,除运动症状外,帕金森病患者还常常伴有一系列非运动症状,其中睡眠障碍是最为显著的非运动症状之一。

脑电图(Electroencephalogram, EEG)是一种记录大脑电活动的无创检测方法,广泛用于睡眠研究。通过分析帕金森病患者在不同睡眠状态下的脑电图特征,可以揭示其睡眠结构的异常变化,为进一步的诊断和治疗提供依据。

本文旨在利用多种机器学习模型对帕金森病患者的睡眠状态脑电特征进行分析和分类。

数据集

帕金森病EEG数据集来自UCI机器学习数据库,包含15名帕金森病患者和16名健康对照的EEG信号。这些数据用于研究帕金森病患者和健康人之间EEG信号的差异,旨在帮助诊断和理解帕金森病,数据集地址为:点击

部分数据分析

在这里插入图片描述

    MDVP基本频率,单位为赫兹(Hz)。MDVP最大基本频率。MDVP最小基本频率。MDVP基本频率的波动百分比。MDVP基本频率的绝对波动。MDVP基本频率相对平均扰动。MDVP五点周期扰动商。Jitter 周期差异的绝对平均值,衡量频率波动。MDVP 振幅波动。MDVP振幅波动,以分贝(dB)为单位。Shimmer三点振幅扰动商。Shimmer五点振幅扰动商。MDVP平均振幅扰动商。Shimmer振幅差异的绝对平均值。NHR - 噪声与谐波比。HNR - 谐波与噪声比。status - 受试者状态(通常0表示健康,1表示病理状态)。RPDE - 递归周期密度熵,衡量信号复杂度。DFA - 去趋势波动分析 spread1 - 基本频率扩展的非线性度量。D2 - 关联维数,衡量信号混沌性。PPE - 音调周期熵,另一种衡量信号复杂度的方法。

相关性分析

在这里插入图片描述

部分算法代码

XGBoost 网格搜索交叉验证(GridSearchCV)

# Defining Parameter Dictionary
param_dict = {'max_depth': range(4,8), 'eta' : [0.1, 0.2, 0.3, 0.4, 0.5],'reg_lambda' : [0.8, 0.9, 1, 1.1, 1.2],'random_state': [300, 600, 900]}
clf = GridSearchCV(XGBClassifier(), param_grid = param_dict,scoring = 'f1', cv = 3, verbose = 1)
clf.fit(X_train, y_train)
GridSearchCV(cv=3, error_score=nan,estimator=XGBClassifier(base_score=0.5, booster='gbtree',colsample_bylevel=1, colsample_bynode=1,colsample_bytree=1, gamma=0,learning_rate=0.1, max_delta_step=0,max_depth=3, min_child_weight=1,missing=None, n_estimators=100, n_jobs=1,nthread=None, objective='binary:logistic',random_state=0, reg_alpha=0, reg_lambda=1,scale_pos_weight=1, seed=None, silent=None,subsample=1, verbosity=1),iid='deprecated', n_jobs=None,param_grid={'eta': [0.1, 0.2, 0.3, 0.4, 0.5],'max_depth': range(4, 8),'random_state': [300, 600, 900],'reg_lambda': [0.8, 0.9, 1, 1.1, 1.2]},pre_dispatch='2*n_jobs', refit=True, return_train_score=False,scoring='f1', verbose=1) 

部分结果展示

展示了使用决策树分类器(Decision Tree Classifier)对数据进行训练和测试的结果,具体包括模型的精度、召回率、F1分数和支持度。

  • 模型在测试数据集上的总体准确率为92%,表现良好。
  • 对类别0的精度较高(97%),但召回率稍低(88%),可能会漏掉一些实际为类别0的样本。
  • 对类别1的召回率较高(96%),精度相对较低(86%),有时会错误地将一些样本预测为类别1。
  • 综合来看,模型在这两个类别上的表现较为均衡,F1分数也较高(都在0.91以上),说明模型在处理这类任务时具有较好的分类能力。

在这里插入图片描述
展示了使用随机森林分类器(Random Forest Classifier)对数据进行训练和测试的结果,具体包括模型的精度、召回率、F1分数和支持度。

  • 模型在测试数据集上的总体准确率为95%,表现非常优秀。
  • 对类别0的精度和召回率都很高(分别为94%和97%),F1分数也很高(0.96),说明模型对类别0的预测非常准确和全面。
  • 对类别1的精度和召回率也很高(分别为96%和92%),F1分数为0.94,说明模型对类别1的预测也很准确。
  • 综合来看,模型在这两个类别上的表现都非常均衡,F1分数都在0.94以上,表明模型在处理这类任务时具有非常强的分类能力,比之前的决策树分类器表现更好。

在这里插入图片描述

在这里插入图片描述
最优模型: 随机森林(RF)和支持向量机(SVM)在各项指标上表现均衡且优异,特别是在准确率、F1-Score和R2-Score上表现突出。

次优模型: K近邻(KNN)也表现良好,但相比RF和SVM稍逊色。

逻辑回归(LR)和XGBoost(XGB): 表现尚可,但在一些指标上略低于最优模型。

表现较差: 朴素贝叶斯(NB),特别是在准确率、F1-Score和R2-Score上,性能较为不理想。

论文 代码 获取方式

点这里 只需要一点点辛苦费,不需要你跑模型,都是ipynb文件。

这篇关于机器学习项目——基于机器学习(决策树 随机森林 朴素贝叶斯 SVM KNN XGBoost)的帕金森脑电特征识别研究(代码/报告材料)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1138192

相关文章

部署Vue项目到服务器后404错误的原因及解决方案

《部署Vue项目到服务器后404错误的原因及解决方案》文章介绍了Vue项目部署步骤以及404错误的解决方案,部署步骤包括构建项目、上传文件、配置Web服务器、重启Nginx和访问域名,404错误通常是... 目录一、vue项目部署步骤二、404错误原因及解决方案错误场景原因分析解决方案一、Vue项目部署步骤

Java调用DeepSeek API的最佳实践及详细代码示例

《Java调用DeepSeekAPI的最佳实践及详细代码示例》:本文主要介绍如何使用Java调用DeepSeekAPI,包括获取API密钥、添加HTTP客户端依赖、创建HTTP请求、处理响应、... 目录1. 获取API密钥2. 添加HTTP客户端依赖3. 创建HTTP请求4. 处理响应5. 错误处理6.

使用 sql-research-assistant进行 SQL 数据库研究的实战指南(代码实现演示)

《使用sql-research-assistant进行SQL数据库研究的实战指南(代码实现演示)》本文介绍了sql-research-assistant工具,该工具基于LangChain框架,集... 目录技术背景介绍核心原理解析代码实现演示安装和配置项目集成LangSmith 配置(可选)启动服务应用场景

golang内存对齐的项目实践

《golang内存对齐的项目实践》本文主要介绍了golang内存对齐的项目实践,内存对齐不仅有助于提高内存访问效率,还确保了与硬件接口的兼容性,是Go语言编程中不可忽视的重要优化手段,下面就来介绍一下... 目录一、结构体中的字段顺序与内存对齐二、内存对齐的原理与规则三、调整结构体字段顺序优化内存对齐四、内

如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解

《如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别详解》:本文主要介绍如何通过海康威视设备网络SDK进行Java二次开发摄像头车牌识别的相关资料,描述了如何使用海康威视设备网络SD... 目录前言开发流程问题和解决方案dll库加载不到的问题老旧版本sdk不兼容的问题关键实现流程总结前言作为

Python中顺序结构和循环结构示例代码

《Python中顺序结构和循环结构示例代码》:本文主要介绍Python中的条件语句和循环语句,条件语句用于根据条件执行不同的代码块,循环语句用于重复执行一段代码,文章还详细说明了range函数的使... 目录一、条件语句(1)条件语句的定义(2)条件语句的语法(a)单分支 if(b)双分支 if-else(

Java深度学习库DJL实现Python的NumPy方式

《Java深度学习库DJL实现Python的NumPy方式》本文介绍了DJL库的背景和基本功能,包括NDArray的创建、数学运算、数据获取和设置等,同时,还展示了如何使用NDArray进行数据预处理... 目录1 NDArray 的背景介绍1.1 架构2 JavaDJL使用2.1 安装DJL2.2 基本操

MySQL数据库函数之JSON_EXTRACT示例代码

《MySQL数据库函数之JSON_EXTRACT示例代码》:本文主要介绍MySQL数据库函数之JSON_EXTRACT的相关资料,JSON_EXTRACT()函数用于从JSON文档中提取值,支持对... 目录前言基本语法路径表达式示例示例 1: 提取简单值示例 2: 提取嵌套值示例 3: 提取数组中的值注意

配置springboot项目动静分离打包分离lib方式

《配置springboot项目动静分离打包分离lib方式》本文介绍了如何将SpringBoot工程中的静态资源和配置文件分离出来,以减少jar包大小,方便修改配置文件,通过在jar包同级目录创建co... 目录前言1、分离配置文件原理2、pom文件配置3、使用package命令打包4、总结前言默认情况下,

CSS3中使用flex和grid实现等高元素布局的示例代码

《CSS3中使用flex和grid实现等高元素布局的示例代码》:本文主要介绍了使用CSS3中的Flexbox和Grid布局实现等高元素布局的方法,通过简单的两列实现、每行放置3列以及全部代码的展示,展示了这两种布局方式的实现细节和效果,详细内容请阅读本文,希望能对你有所帮助... 过往的实现方法是使用浮动加