深入解析python版SVM源码系列--简化版SMO算法 SVM使用SMO算法来解决其中涉及到的二次规划问题。一个简单版本的SMO算法的实现如下: ''' 随机选择随机数,不等于J '''def selectJrand(i,m):j=i #we want to select any J not equal to iwhile (j==i):j = int(random
贝叶斯方法和支持向量机(SVM)是两种在机器学习领域中广泛使用的算法,它们各自有着独特的优势和应用场景。下面详细介绍这两种算法及其实际应用和使用案例。 贝叶斯方法 概述: 贝叶斯方法基于贝叶斯定理,通过结合先验知识和观测数据来更新对假设的信念。这种方法在处理不确定性和概率推断方面非常有效。 核心原理: 贝叶斯定理: P ( A ∣ B ) = ( P ( B ∣ A ) ⋅ P ( A
SVM 线性可分SVM题目绘制决策边界改变C,观察决策边界代码 线性不可分SVM核函数代码 寻找最优C、gamma垃圾邮件过滤 线性可分SVM 题目 数据分布 绘制决策边界 import numpy as npimport matplotlib.pyplot as pltimport scipy.io as siofrom scipy.optimize i
1. 拉格朗日乘子(Lagrange multiplier)法求解条件极值 1.1 拉格朗日乘子的简单描述 简单的条件极值问题可以描述为:求函数 z = f ( x , y ) z=f(x,y) z=f(x,y)的最大值,且 x , y x,y x,y满足约束条件 φ ( x , y ) = M \varphi (x,y)=M φ(x,y)=M( M M M已知)。 拉格朗日乘子的求解步骤为: