sklearn光速入门实践[1]——实现一个简单的SVM分类器

2024-08-26 14:32

本文主要是介绍sklearn光速入门实践[1]——实现一个简单的SVM分类器,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python的sklearn库封装了许多常用的机器学习算法,而且入门简单,调用方便。下面我们用sklearn库和简单的几个点作为数据集,来实现一个简单的SVM分类器。

首先,准备好数据。我们把(2,0),(0,2),(0,0)这三个点当作类别1;(3,0),(0,3),(3,3)这三个点当作类别2,训练好SVM分类器之后,我们预测(-1,-1),(4,4)这两个点所属的类别。示意图如下:
在这里插入图片描述

1、组装数据集。

在组装数据集的时候,这里最重要的就是要注意数据的组合格式。data中每行元素作为一个样本,各列分别是该样本的各个属性,比如上边的几个点,封装成如下格式:x = np.array([[2,0],[0,2],[0,0],[3,0],[0,3],[3,3]]) 。label排成一行,与data中的数据相对应即可:y = np.array([1,1,1,2,2,2])

【注】:这里利用Pandas进行封装也可以。

import pandas as pd
data = np.array([[2,0,1],[0,2,1],[0,0,1],[3,0,2],[0,3,2],[3,3,2]])
data = pd.DataFrame(data,column = [0,1,2])
x = data[[0,1]]
y = data[2]
2、设置SVM分类器的属性

model = SVC(kernel='linear', probability=True)
当probability=False时,没办法调用 model.predict_proba()函数
可选的属性列表:

  • 待完善1
  • 待完善2
3、执行SVM分类器

model.fit(x,y)

4、预测

pre = model.predict_proba(C)

最后,附完整代码如下:

from sklearn.svm import SVC
import numpy as np
x = np.array([[2,0],[0,2],[0,0],[3,0],[0,3],[3,3]])
y = np.array([1,1,1,2,2,2])
model = SVC(kernel='linear', probability=True)#probability=False时,没办法调用 model.predict_proba()函数
model.fit(data,label)
C = [[-1,-1],[4,4]]
pre = model.predict_proba(C)
print(pre)
pre1 = model.predict(C)
print(pre1)

结果如下:

[[0.62507004 0.37492996][0.33332917 0.66667083]]
[1 2]

可以看到,预测(-1,-1)的标签是1的概率为0.62507004,2的概率为0.37492996。最终预测为类别1。
预测(4,4)的标签是1的概率为0.33332917,2的概率为0.66667083。最终预测为类别2。这个结果与我们在图中直观看到的结果相符。

官方文档地址:sklearn.svm.SVC

这篇关于sklearn光速入门实践[1]——实现一个简单的SVM分类器的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1108827

相关文章

MySQL 迁移至 Doris 最佳实践方案(最新整理)

《MySQL迁移至Doris最佳实践方案(最新整理)》本文将深入剖析三种经过实践验证的MySQL迁移至Doris的最佳方案,涵盖全量迁移、增量同步、混合迁移以及基于CDC(ChangeData... 目录一、China编程JDBC Catalog 联邦查询方案(适合跨库实时查询)1. 方案概述2. 环境要求3.

Spring StateMachine实现状态机使用示例详解

《SpringStateMachine实现状态机使用示例详解》本文介绍SpringStateMachine实现状态机的步骤,包括依赖导入、枚举定义、状态转移规则配置、上下文管理及服务调用示例,重点解... 目录什么是状态机使用示例什么是状态机状态机是计算机科学中的​​核心建模工具​​,用于描述对象在其生命

Spring Boot 结合 WxJava 实现文章上传微信公众号草稿箱与群发

《SpringBoot结合WxJava实现文章上传微信公众号草稿箱与群发》本文将详细介绍如何使用SpringBoot框架结合WxJava开发工具包,实现文章上传到微信公众号草稿箱以及群发功能,... 目录一、项目环境准备1.1 开发环境1.2 微信公众号准备二、Spring Boot 项目搭建2.1 创建

Linux进程CPU绑定优化与实践过程

《Linux进程CPU绑定优化与实践过程》Linux支持进程绑定至特定CPU核心,通过sched_setaffinity系统调用和taskset工具实现,优化缓存效率与上下文切换,提升多核计算性能,适... 目录1. 多核处理器及并行计算概念1.1 多核处理器架构概述1.2 并行计算的含义及重要性1.3 并

IntelliJ IDEA2025创建SpringBoot项目的实现步骤

《IntelliJIDEA2025创建SpringBoot项目的实现步骤》本文主要介绍了IntelliJIDEA2025创建SpringBoot项目的实现步骤,文中通过示例代码介绍的非常详细,对大家... 目录一、创建 Spring Boot 项目1. 新建项目2. 基础配置3. 选择依赖4. 生成项目5.

全面掌握 SQL 中的 DATEDIFF函数及用法最佳实践

《全面掌握SQL中的DATEDIFF函数及用法最佳实践》本文解析DATEDIFF在不同数据库中的差异,强调其边界计算原理,探讨应用场景及陷阱,推荐根据需求选择TIMESTAMPDIFF或inte... 目录1. 核心概念:DATEDIFF 究竟在计算什么?2. 主流数据库中的 DATEDIFF 实现2.1

Linux下删除乱码文件和目录的实现方式

《Linux下删除乱码文件和目录的实现方式》:本文主要介绍Linux下删除乱码文件和目录的实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux下删除乱码文件和目录方法1方法2总结Linux下删除乱码文件和目录方法1使用ls -i命令找到文件或目录

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并

mybatis执行insert返回id实现详解

《mybatis执行insert返回id实现详解》MyBatis插入操作默认返回受影响行数,需通过useGeneratedKeys+keyProperty或selectKey获取主键ID,确保主键为自... 目录 两种方式获取自增 ID:1. ​​useGeneratedKeys+keyProperty(推

Spring Boot集成Druid实现数据源管理与监控的详细步骤

《SpringBoot集成Druid实现数据源管理与监控的详细步骤》本文介绍如何在SpringBoot项目中集成Druid数据库连接池,包括环境搭建、Maven依赖配置、SpringBoot配置文件... 目录1. 引言1.1 环境准备1.2 Druid介绍2. 配置Druid连接池3. 查看Druid监控