小琳 AI 课堂:SVM支持向量机

2024-08-25 05:52
文章标签 ai 支持 课堂 向量 svm 小琳

本文主要是介绍小琳 AI 课堂:SVM支持向量机,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

哈喽,亲爱的小伙伴们!这里是小琳 AI 课堂😜

今天咱们要好好聊聊超级厉害的支持向量机(Support Vector Machine,SVM)👏 它在机器学习领域那可是一颗耀眼的明星✨

🎯说到技术细节,SVM 属于有监督的学习算法,既能搞定分类问题,又能处理回归问题,简直牛到不行😎 它的核心呢,就是在特征空间里拼命寻找一个超级厉害的超平面,把不同类别的样本分得清清楚楚👀 要是遇到线性可分的情况,SVM 会全力找出能让两类样本间隔达到最大的超平面,这个超平面可以用 w T x + b = 0 w^Tx + b = 0 wTx+b=0 来表示,其中 w w w 是决定超平面方向的法向量, b b b 是截距哟😜
在寻找最优超平面时,SVM 会特别关注那些离超平面最近的样本点,它们就是至关重要的支持向量啦🤗 要想找到最优的 w w w b b b ,还得求解一个二次规划问题,这可不容易哟。要是碰到线性不可分的情况,SVM 就会请来核函数这位大神,把样本映射到高维空间,这样在高维空间里就线性可分啦👍
💥下面给大家说说几个关键要点哈:

  1. 间隔最大化:这绝对是 SVM 的核心原则,通过把间隔最大化,能让分类更精准,泛化能力杠杠强💪
  2. 支持向量:这些可是确定最优超平面的关键样本点,其他样本点的影响力相对小些哟😜
  3. 核函数:专门用来解决线性不可分问题的,常见的有线性核、多项式核、高斯核等等😃
  4. 求解二次规划问题:这是确定最优超平面的数学手段,得费不少心思和计算资源呢🤔

🎈再来看几个实际例子:
假设咱们有个二维数据集,里面有两种不同类别的点(红的和蓝的),想用 SVM 找出分类边界😁 经过 SVM 算法一通操作,成功找到了最优超平面,把两类点分得妥妥的,间隔也是最大的。在这个例子里,超平面附近的几个点就是支持向量哟👀 再比如说,在图像识别领域,SVM 能够大展身手,用来区分不同的物体类别。把图像的特征提取出来作为输入,SVM 就能轻松学会不同类别的差异,分类超准哒😎

📜SVM 背后的故事也特别精彩哟:
支持向量机的理论最早是由 Vladimir N. Vapnik 和 Alexey Ya. Chervonenkis 在 20 世纪 60 年代提出来的😃 但当时因为计算能力有限,也没有好的算法实现,所以 SVM 没能大火起来😔 等到 20 世纪 90 年代,计算机技术飞速进步,一些优化算法也出现了,SVM 这才在机器学习领域大放异彩啦😜 特别是在数据量不大、特征维度高的情况下,SVM 的表现那叫一个出色呢👏 Vapnik 他们的工作为 SVM 的发展打下了坚实基础,不仅提出了算法,还推动了机器学习理论的进步,让咱们对分类问题的理解更上一层楼👍 在实际应用中,SVM 也在不断改进和优化。研究人员一直在寻找更厉害的核函数、更快的求解算法,以及更好适应大规模数据的方法😁

总之呀,支持向量机这个强大的机器学习算法,在好多领域都取得了很棒的成果,它的理论和应用还在不断发展和完善哟💖
本期的小琳 AI 课堂就到这儿啦。

这篇关于小琳 AI 课堂:SVM支持向量机的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1104728

相关文章

SpringKafka消息发布之KafkaTemplate与事务支持功能

《SpringKafka消息发布之KafkaTemplate与事务支持功能》通过本文介绍的基本用法、序列化选项、事务支持、错误处理和性能优化技术,开发者可以构建高效可靠的Kafka消息发布系统,事务支... 目录引言一、KafkaTemplate基础二、消息序列化三、事务支持机制四、错误处理与重试五、性能优

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

一文教你解决Python不支持中文路径的问题

《一文教你解决Python不支持中文路径的问题》Python是一种广泛使用的高级编程语言,然而在处理包含中文字符的文件路径时,Python有时会表现出一些不友好的行为,下面小编就来为大家介绍一下具体的... 目录问题背景解决方案1. 设置正确的文件编码2. 使用pathlib模块3. 转换路径为Unicod

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav

C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)

《C#集成DeepSeek模型实现AI私有化的流程步骤(本地部署与API调用教程)》本文主要介绍了C#集成DeepSeek模型实现AI私有化的方法,包括搭建基础环境,如安装Ollama和下载DeepS... 目录前言搭建基础环境1、安装 Ollama2、下载 DeepSeek R1 模型客户端 ChatBo

Spring AI集成DeepSeek的详细步骤

《SpringAI集成DeepSeek的详细步骤》DeepSeek作为一款卓越的国产AI模型,越来越多的公司考虑在自己的应用中集成,对于Java应用来说,我们可以借助SpringAI集成DeepSe... 目录DeepSeek 介绍Spring AI 是什么?1、环境准备2、构建项目2.1、pom依赖2.2

定价129元!支持双频 Wi-Fi 5的华为AX1路由器发布

《定价129元!支持双频Wi-Fi5的华为AX1路由器发布》华为上周推出了其最新的入门级Wi-Fi5路由器——华为路由AX1,建议零售价129元,这款路由器配置如何?详细请看下文介... 华为 Wi-Fi 5 路由 AX1 已正式开售,新品支持双频 1200 兆、配有四个千兆网口、提供可视化智能诊断功能,建