Spring AI与DeepSeek实战一之快速打造智能对话应用

2025-03-06 17:50

本文主要是介绍Spring AI与DeepSeek实战一之快速打造智能对话应用,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭...

一、概述

在 AI 技术蓬勃发展的今天,国产大模型 DeepSeek 凭借其 低成本高性能 的特点,成为企业智能化转型的热门选择。而 Spring AI 作为 Java 生态的 AI 集成框架,通过统一API、简化配置等特性,让开发者无需深入底层即可快速调用编程各类 AI 服务。本文将手把手教你通过 spring-ai 集成 DeepSeek 接口实现普通对话与流式对话功能,助力你的 Java 应用轻松接入 AI 能力!

二、申请DeepSeek的API-KEY

相较于直接调用 DeepSeek 官方的 API,阿里云百炼基于阿里云强大的云计算基础设施,提供了高可用性和稳定性的服务,并且支持程序运行时动态切换 模型广场 中的任意大模型。

Spring AI与DeepSeek实战一之快速打造智能对话应用

登录阿里云,进入 阿里云百炼 的页面:

https://bailian.console.aliyun.com/?apiKey=1#/api-key

创建自己的 API-KEY

Spring AI与DeepSeek实战一之快速打造智能对话应用

三、项目搭建

3.1. 开发环境要求

  • JDK 17+
  • Spring Boot 3.2.x及以上

3.2. maven配置

Spring Boot 项目的 pom.XML 中添加 spring-ai 依赖

<dependency>
    <groupId>com.alibaba.cloud.ai</groupId>
    <artifactId>spring-ai-alibaba-starter</artifactId>
</dependency>

增加仓库的配置

<repositories>
    <repository>
        <id>alimaven</id>
        <url>https://maven.aliyun.com/repository/public</url>
    </repository>
    <repository>
        <id>spring-milestones</id>
        <url>https://repo.spring.io/milestone</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
    <repository>
        <id>spring-snapshots</id>
        <url>https://repo.spring.io/snapshot</url>
        <snapshots>
            <enabled>false</enabled>
        </snapshots>
    </repository>
</repositories>

3.3. 配置 API-KEY

application.yml 中添加以下配置:

spring:
  ai:
    dashscope:
      api-key: sk-xxxxxx

api-key 配置在阿里云百炼里申请的api-key 3.4. 创建ChatClient对象

private final ChatClient chatClient;
public ChatController(ChatClient.Builder builder) {
    String sysPrompt = """
        你是一个博学的智能聊天助手,请根据用户提问回答。
        请讲中文。
        今天的日期是 {current_date}。
        """;
    this.chatClient = builder
            .defaultSystem(sysPrompt)
            .defaultOptions(
                    DashScopeChatOptions.builder()
                            /**
                             * 值范围:[0, 2),系统默认值0.85。不建议取值为0,无意义
                             */
                    编程        .withTemperature(1.3)
                            .withModel("deepseek-v3")
                            .build()
            )
            .build();
}
  • defaultSystem 指定系统 prompt 来约束大模型的行为或者提供一些上下文信息,如这里告诉大模型今天的日期是多少,支持占位符python
  • defaultOptions 配置模型的参数
    • withTemperature 用于控制随机性和多样性的程度,值越高大模型回复的内容越丰富越天马行空
    • withModel 配置模型广场中的模型名称,这里填写 deepseek-v3

模型广场的模型名称清单:https://help.aliyun.com/zh/model-studio/getting-started/models

3.5. 创建对话接口

@GetMapping(value = "/chat")
public String chat(@RequestParam String input, HttpServletResponse reChina编程sponse) {
    // 设置字符编码,避免乱码
    response.setCharacterEncoding("UTF-8");
    return chatClient.prompt().user(input)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .call()
            .content();
}

每次调用接口时,通过 system 来给 current_date 占位符动态赋值。

调用示例

问身份

Spring AI与DeepSeek实战一之快速打造智能对话应用

问日期

Spring AI与DeepSeek实战一之快速打造智能对话应用

3.6. 切换模型

@GetMapping(value = "/chat")
public String chat(@RequestParam String input, @RequestParam(required = false) String model, HttpServletResponse response) {
    response.setCharacterEncoding("UTF-8");
    if (StrUtil.isEmpty(model)) {
        model = "deepseek-v3";
    }
    return chatClient.prompt().user(input)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .options(DashScopeChatOptions.builder().withModel(model).build())
            .call()
            .content();
}

使用 withModel 来配置模型名称

调用示例

切换deepseek-r1模型

Spring AI与DeepSeek实战一之快速打造智能对话应用

切换通义千问模型

Spring AI与DeepSeek实战一之快速打造智能对话应用

3.7. 使用prompt模板

通过 PromptTemplate 可以编辑复杂的提示词,并且也支持占位符

@GetMapping(value = "/chatTemp")
public String chatTemp(@RequestParam String input, HttpServletResponse response) {
    response.setCharacterEncoding("UTF-8");
    // 使用PromptTemplate定义提示词模板
    PromptTemplate promptTemplate = new PromptTemplate("请逐步解释你的思考过程: {input}");
    Prompt prompt = promptTemplate.create(Map.of("input", input));
    return chatClient.prompt(prompt)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .call()
            .content();
}

这里提出让 deepseek-v3 进行逐步拆分思考,并把思考过程返回。

调用示例

Spring AI与DeepSeek实战一之快速打造智能对话应用

可以看到大模型会拆分多步来进行推论结果。

3.8. 使用流式对话

当前接口需等待大模型完全生成回复内容才能返回,这用户体验并不好。为实现类似 ChatGPT 的逐句实时输出效果,可采用流式传输技术(Streaming Response)。

@GetMapping(value = "/streamChat", produces = MediaType.TEXT_EVENT_STREAM_VALUE)
public Flux<String> streamChat(@RequestParam String input, HttpServletResponse response) {
    response.setCharacterEncoding("UTF-8");
    // 使用PromptTemplate定义提示词模板
    PromptTemplate promptTemplate = new PromptTemplate("请逐步解释你的思考过程: {input}");
    Prompt prompt = promptTemplate.create(Map.of("input", input));
    return chatClient.prompt(prompt)
            .system(s -> s.param("current_date", LocalDate.now().toString()))
            .stream()
            .content()
            .concatWith(Flux.just("[DONE]"))
            .onErrorResume(e -> Flux.just("ERROR: " + e.getMessage(), "[DONE]"));
}
  • 调用时把 call() 改成 stream()
  • 并且遵循SSE协议最后发送[DONE]终止标识

调用示例

Spring AI与DeepSeek实战一之快速打造智能对话应用

  • data: xxx 这种是 Server-Sent Events 的格式要求;
  • 需要前端搭配 EventSource 或 WebSocket 等方式来接收流式数据,并结合 marked.js 来正确显示 markdown 语法。

四、总结

虽然通过 Spring AI 能够快速完成 DeepSeek 大模型与 Spring Boot 项目的对接,实现基础的对话接口开发,但这仅是智能化转型的初级阶段。要将大模型能力真正落地为生产级应用,还是需实现以下技术:

  • 能力扩展层:通过 智能体 实现意图理解与任务调度,结合 FunctionCall 实现结构化数据交互,实现AI与业务系统的无缝对接;
  • 知识增强层:应用 RAG(检索增强生成)技术构建领域知识库,解决大模型幻觉问题,支撑专业场景的精准问答
  • 流程编排层:设计 Agent 工作流实现复杂业务逻辑拆解,支持多步骤推理与自动化决策;
  • 模型优化:基于业务数据实施模型微调 Fine-tuning 提升垂直场景的响应质量和可控性。

五、完整代码

Gitee地址:

https://gitee.http://www.chinasem.cncom/zlt2000/zlt-spring-ai-app

github地址:

https://github.com/zlt2000/zlt-spring-ai-app

到此这篇关于Spring AI与DeepSeek实战一:快速打造智能对话应用的文章就介绍到这了,更多相关Spring AI DeepSeek智能对话内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程China编程(www.chinasem.cn)!

这篇关于Spring AI与DeepSeek实战一之快速打造智能对话应用的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1153656

相关文章

使用Python实现表格字段智能去重

《使用Python实现表格字段智能去重》在数据分析和处理过程中,数据清洗是一个至关重要的步骤,其中字段去重是一个常见且关键的任务,下面我们看看如何使用Python进行表格字段智能去重吧... 目录一、引言二、数据重复问题的常见场景与影响三、python在数据清洗中的优势四、基于Python的表格字段智能去重

java两个List的交集,并集方式

《java两个List的交集,并集方式》文章主要介绍了Java中两个List的交集和并集的处理方法,推荐使用Apache的CollectionUtils工具类,因为它简单且不会改变原有集合,同时,文章... 目录Java两个List的交集,并集方法一方法二方法三总结java两个List的交集,并集方法一

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Springboot的自动配置是什么及注意事项

《Springboot的自动配置是什么及注意事项》SpringBoot的自动配置(Auto-configuration)是指框架根据项目的依赖和应用程序的环境自动配置Spring应用上下文中的Bean... 目录核心概念:自动配置的关键特点:自动配置工作原理:示例:需要注意的点1.默认配置可能不适合所有场景

Python如何快速下载依赖

《Python如何快速下载依赖》本文介绍了四种在Python中快速下载依赖的方法,包括使用国内镜像源、开启pip并发下载功能、使用pipreqs批量下载项目依赖以及使用conda管理依赖,通过这些方法... 目录python快速下载依赖1. 使用国内镜像源临时使用镜像源永久配置镜像源2. 使用 pip 的并

使用Apache POI在Java中实现Excel单元格的合并

《使用ApachePOI在Java中实现Excel单元格的合并》在日常工作中,Excel是一个不可或缺的工具,尤其是在处理大量数据时,本文将介绍如何使用ApachePOI库在Java中实现Excel... 目录工具类介绍工具类代码调用示例依赖配置总结在日常工作中,Excel 是一个不可或缺的工http://

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

spring @EventListener 事件与监听的示例详解

《spring@EventListener事件与监听的示例详解》本文介绍了自定义Spring事件和监听器的方法,包括如何发布事件、监听事件以及如何处理异步事件,通过示例代码和日志,展示了事件的顺序... 目录1、自定义Application Event2、自定义监听3、测试4、源代码5、其他5.1 顺序执行

SpringBoot实现导出复杂对象到Excel文件

《SpringBoot实现导出复杂对象到Excel文件》这篇文章主要为大家详细介绍了如何使用Hutool和EasyExcel两种方式来实现在SpringBoot项目中导出复杂对象到Excel文件,需要... 在Spring Boot项目中导出复杂对象到Excel文件,可以利用Hutool或EasyExcel