本文主要是介绍【异常点检测 孤立森林算法】10分钟带你了解下孤立森林算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
孤立森林(isolation Forest)算法,2008年由刘飞、周志华等提出,算法不借助类似距离、密度等指标去描述样本与其他样本的差异,而是直接去刻画所谓的疏离程度(isolation),因此该算法简单、高效,在工业界应用较多。
用一个例子来说明孤立森林的思想:假设现在有一组一维数据(如下图),我们要对这组数据进行切分,目的是把点A和 B单独切分出来,先在最大,值和最小值之间随机选择一个值 X,然后按照 <X 和 >=X 可以把数据分成左右两组,在这两组数据中分别重复这个步骤,直到数据不可再分。
点B跟其他数据比较疏离,可能用很少的次数就可以把它切分出来,点 A 跟其他数据点聚在一起,可能需要更多的次数才能把它切分出来。
那么从统计意义上来说,相对聚集的点需要分割的次数较多,比较孤立的点需要的分割次数少,孤立森林就是利用分割的次数来度量一个点是聚集的(正常)还是孤立的(异常)。
下面构造一个例子 ,数据集是月工资的,单位为万,看看哪些是异常的。
我们用sklearn 实现,我们使用sklearn中的孤立森林,进行参数调节讲解,一般任务默认参数即可,算法API地址:
孤立森林sklearn官方api接口
1、基本用法
sklearn.ensemble.IsolationForest(*, n_estimators=100, max_samples='auto', contamination='auto', max_features=1.0, bootstrap=False, n_jobs=None, random_state=None, verbose=0, warm_start=False)
2、参数详解
n_estimators : int, optional (default=100)iTree的个数,指定该森林中生成的随机树数量,默认为100个max_samples : int or float, optional (default=”auto”)构建子树的样本数,整数为个数,小数为占全集的比例,用来训练随机数的样本数量,即子采样的大小如果设置的是一个int常数,那么就会从总样本X拉取max_samples个样本来生成一棵树iTree如果设置的是一个float浮点数,那么就会从总样本X拉取max_samples * X.shape[0]个样本,X.shape[0]表示总样本个数如果设置的是"auto",则max_samples=min(256, n_samples),n_samples即总样本的数量如果max_samples值比提供的总样本数量还大的话,所有的样本都会用来构造数,意思就是没有采样了,构造的n_estimators棵iTree使用的样本都是一样的,即所有的样本contamination : float in (0., 0.5), optional (default=0.1)取值范围为(0., 0.5),表示异常数据占给定的数据集的比例,数据集中污染的数量,其实就是训练数据中异常数据的数量,比如数据集异常数据的比例。定义该参数值的作用是在决策函数中定义阈值。如果设置为'auto',则决策函数的阈值就和论文中定义的一样max_features : int or float, optional (default=1.0)构建每个子树的特征数,整数位个数,小数为占全特征的比例,指定从总样本X中抽取来训练每棵树iTree的属性的数量,默认只使用一个属性如果设置为int整数,则抽取max_features个属性如果是float浮点数,则抽取max_features * X.shape[1]个属性bootstrap : boolean, optional (default=False)
采样是有放回还是无放回,如果为True,则各个树可放回地对训练数据进行采样。如果为False,则执行不放回的采样。n_jobs :int or None, optional (default=None)
在运行fit()和predict()函数时并行运行的作业数量。除了在joblib.parallel_backend上下文的情况下,None表示为1。设置为-1则表示使用所有可用的处理器random_state : int, RandomState instance or None, optional (default=None)每次训练的随机性如果设置为int常数,则该random_state参数值是用于随机数生成器的种子如果设置为RandomState实例,则该random_state就是一个随机数生成器如果设置为None,该随机数生成器就是使用在np.random中的RandomState实例verbose : int, optional (default=0)训练中打印日志的详细程度,数值越大越详细warm_start : bool, optional (default=False)
当设置为True时,重用上一次调用的结果去fit,添加更多的树到上一次的森林1集合中;否则就fit一整个新的森林3、属性
base_estimator_:The child estimator template used to create the collection of fitted sub-estimators.estimators_:list of ExtraTreeRegressor instances The collection of fitted sub-estimators.estimators_:features_list of ndarray The subset of drawn features for each base estimator.estimators_samples_:list of ndarray The subset of drawn samples for each base estimator.max_samples_:The actual number of samplesn_features_:DEPRECATED: Attribute n_features_ was deprecated in version 1.0 and will be removed in 1.2.n_features_in_:Number of features seen during fit.feature_names_in_:Names of features seen during fit. Defined only when X has feature names that are all strings4、方 法
fit(X[, y, sample_weight]):训练模型decision_function(X):返回平均异常分数predict(X):预测模型返回1或者-1fit_predict(X[, y]):训练-预测模型一起完成get_params([deep]):Get parameters for this estimator.score_samples(X):Opposite of the anomaly score defined in the original paper.set_params(**params):Set the parameters of this estimator.
代码实现例子:
# -*- coding: utf-8 -*-# 加载模型所需要的的包
import pandas as pd
from sklearn.ensemble import IsolationForest
import warnings
warnings.filterwarnings('ignore')# 构造一个数据集,只包含一列数据,假如都是月薪数据,有些可能是错的
df = pd.DataFrame({'salary':[4,1,4,5,3,6,2,5,6,2,5,7,1,8,12,33,4,7,6,7,8,55]})#构建模型 ,n_estimators=100 ,构建100颗树
model = IsolationForest(n_estimators=100,max_samples='auto',contamination=float(0.1),max_features=1.0)
# 训练模型
model.fit(df[['salary']])# 预测 decision_function 可以得出 异常评分
df['scores'] = model.decision_function(df[['salary']])# predict() 函数 可以得到模型是否异常的判断,-1为异常,1为正常
df['anomaly'] = model.predict(df[['salary']])
print(df)
运行结果:
salary scores anomaly
0 4 0.212483 1
1 1 0.090735 1
2 4 0.212483 1
3 5 0.224400 1
4 3 0.163518 1
5 6 0.225034 1
6 2 0.160745 1
7 5 0.224400 1
8 6 0.225034 1
9 2 0.160745 1
10 5 0.224400 1
11 7 0.209048 1
12 1 0.090735 1
13 8 0.164438 1
14 12 -0.010082 -1
15 33 -0.115611 -1
16 4 0.212483 1
17 7 0.209048 1
18 6 0.225034 1
19 7 0.209048 1
20 8 0.164438 1
21 55 -0.186734 -1Process finished with exit code 0
我们可以看到,发现了三个异常的数据,和我们认知差不多,都是比较高的,并且异常值越大,异常分scores就越大,比如那个月薪55万的,不是变态就是数据错了。
这篇关于【异常点检测 孤立森林算法】10分钟带你了解下孤立森林算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!