【异常点检测 孤立森林算法】10分钟带你了解下孤立森林算法

2024-09-07 05:48

本文主要是介绍【异常点检测 孤立森林算法】10分钟带你了解下孤立森林算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

孤立森林(isolation Forest)算法,2008年由刘飞、周志华等提出,算法不借助类似距离、密度等指标去描述样本与其他样本的差异,而是直接去刻画所谓的疏离程度(isolation),因此该算法简单、高效,在工业界应用较多。
在这里插入图片描述

用一个例子来说明孤立森林的思想:假设现在有一组一维数据(如下图),我们要对这组数据进行切分,目的是把点A和 B单独切分出来,先在最大,值和最小值之间随机选择一个值 X,然后按照 <X 和 >=X 可以把数据分成左右两组,在这两组数据中分别重复这个步骤,直到数据不可再分。
点B跟其他数据比较疏离,可能用很少的次数就可以把它切分出来,点 A 跟其他数据点聚在一起,可能需要更多的次数才能把它切分出来。
那么从统计意义上来说,相对聚集的点需要分割的次数较多,比较孤立的点需要的分割次数少,孤立森林就是利用分割的次数来度量一个点是聚集的(正常)还是孤立的(异常)。

下面构造一个例子 ,数据集是月工资的,单位为万,看看哪些是异常的。

在这里插入图片描述
我们用sklearn 实现,我们使用sklearn中的孤立森林,进行参数调节讲解,一般任务默认参数即可,算法API地址:

孤立森林sklearn官方api接口

1、基本用法

sklearn.ensemble.IsolationForest(*, n_estimators=100, max_samples='auto', contamination='auto', max_features=1.0, bootstrap=False, n_jobs=None, random_state=None, verbose=0, warm_start=False)

2、参数详解

n_estimators : int, optional (default=100)iTree的个数,指定该森林中生成的随机树数量,默认为100个max_samples : int or float, optional (default=”auto”)构建子树的样本数,整数为个数,小数为占全集的比例,用来训练随机数的样本数量,即子采样的大小如果设置的是一个int常数,那么就会从总样本X拉取max_samples个样本来生成一棵树iTree如果设置的是一个float浮点数,那么就会从总样本X拉取max_samples * X.shape[0]个样本,X.shape[0]表示总样本个数如果设置的是"auto",则max_samples=min(256, n_samples),n_samples即总样本的数量如果max_samples值比提供的总样本数量还大的话,所有的样本都会用来构造数,意思就是没有采样了,构造的n_estimators棵iTree使用的样本都是一样的,即所有的样本contamination : float in (0., 0.5), optional (default=0.1)取值范围为(0., 0.5),表示异常数据占给定的数据集的比例,数据集中污染的数量,其实就是训练数据中异常数据的数量,比如数据集异常数据的比例。定义该参数值的作用是在决策函数中定义阈值。如果设置为'auto',则决策函数的阈值就和论文中定义的一样max_features : int or float, optional (default=1.0)构建每个子树的特征数,整数位个数,小数为占全特征的比例,指定从总样本X中抽取来训练每棵树iTree的属性的数量,默认只使用一个属性如果设置为int整数,则抽取max_features个属性如果是float浮点数,则抽取max_features * X.shape[1]个属性bootstrap : boolean, optional (default=False)
采样是有放回还是无放回,如果为True,则各个树可放回地对训练数据进行采样。如果为False,则执行不放回的采样。n_jobs :int or None, optional (default=None)
在运行fit()和predict()函数时并行运行的作业数量。除了在joblib.parallel_backend上下文的情况下,None表示为1。设置为-1则表示使用所有可用的处理器random_state : int, RandomState instance or None, optional (default=None)每次训练的随机性如果设置为int常数,则该random_state参数值是用于随机数生成器的种子如果设置为RandomState实例,则该random_state就是一个随机数生成器如果设置为None,该随机数生成器就是使用在np.random中的RandomState实例verbose : int, optional (default=0)训练中打印日志的详细程度,数值越大越详细warm_start : bool, optional (default=False)
当设置为True时,重用上一次调用的结果去fit,添加更多的树到上一次的森林1集合中;否则就fit一整个新的森林3、属性
base_estimator_:The child estimator template used to create the collection of fitted sub-estimators.estimators_:list of ExtraTreeRegressor instances The collection of fitted sub-estimators.estimators_:features_list of ndarray The subset of drawn features for each base estimator.estimators_samples_:list of ndarray The subset of drawn samples for each base estimator.max_samples_:The actual number of samplesn_features_:DEPRECATED: Attribute n_features_ was deprecated in version 1.0 and will be removed in 1.2.n_features_in_:Number of features seen during fit.feature_names_in_:Names of features seen during fit. Defined only when X has feature names that are all strings4、方 法
fit(X[, y, sample_weight]):训练模型decision_function(X):返回平均异常分数predict(X):预测模型返回1或者-1fit_predict(X[, y]):训练-预测模型一起完成get_params([deep]):Get parameters for this estimator.score_samples(X):Opposite of the anomaly score defined in the original paper.set_params(**params):Set the parameters of this estimator.

代码实现例子:

# -*- coding: utf-8 -*-# 加载模型所需要的的包
import pandas  as pd
from sklearn.ensemble import IsolationForest
import warnings
warnings.filterwarnings('ignore')# 构造一个数据集,只包含一列数据,假如都是月薪数据,有些可能是错的
df = pd.DataFrame({'salary':[4,1,4,5,3,6,2,5,6,2,5,7,1,8,12,33,4,7,6,7,8,55]})#构建模型 ,n_estimators=100 ,构建100颗树
model = IsolationForest(n_estimators=100,max_samples='auto',contamination=float(0.1),max_features=1.0)
# 训练模型
model.fit(df[['salary']])# 预测 decision_function 可以得出 异常评分
df['scores']  = model.decision_function(df[['salary']])#  predict() 函数 可以得到模型是否异常的判断,-1为异常,1为正常
df['anomaly'] = model.predict(df[['salary']])
print(df)

运行结果:

    salary    scores  anomaly
0        4  0.212483        1
1        1  0.090735        1
2        4  0.212483        1
3        5  0.224400        1
4        3  0.163518        1
5        6  0.225034        1
6        2  0.160745        1
7        5  0.224400        1
8        6  0.225034        1
9        2  0.160745        1
10       5  0.224400        1
11       7  0.209048        1
12       1  0.090735        1
13       8  0.164438        1
14      12 -0.010082       -1
15      33 -0.115611       -1
16       4  0.212483        1
17       7  0.209048        1
18       6  0.225034        1
19       7  0.209048        1
20       8  0.164438        1
21      55 -0.186734       -1Process finished with exit code 0

我们可以看到,发现了三个异常的数据,和我们认知差不多,都是比较高的,并且异常值越大,异常分scores就越大,比如那个月薪55万的,不是变态就是数据错了。

在这里插入图片描述

这篇关于【异常点检测 孤立森林算法】10分钟带你了解下孤立森林算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1144233

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

Python中的随机森林算法与实战

《Python中的随机森林算法与实战》本文详细介绍了随机森林算法,包括其原理、实现步骤、分类和回归案例,并讨论了其优点和缺点,通过面向对象编程实现了一个简单的随机森林模型,并应用于鸢尾花分类和波士顿房... 目录1、随机森林算法概述2、随机森林的原理3、实现步骤4、分类案例:使用随机森林预测鸢尾花品种4.1

Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单

《Springboot的ThreadPoolTaskScheduler线程池轻松搞定15分钟不操作自动取消订单》:本文主要介绍Springboot的ThreadPoolTaskScheduler线... 目录ThreadPoolTaskScheduler线程池实现15分钟不操作自动取消订单概要1,创建订单后

Python中异常类型ValueError使用方法与场景

《Python中异常类型ValueError使用方法与场景》:本文主要介绍Python中的ValueError异常类型,它在处理不合适的值时抛出,并提供如何有效使用ValueError的建议,文中... 目录前言什么是 ValueError?什么时候会用到 ValueError?场景 1: 转换数据类型场景

Spring中Bean有关NullPointerException异常的原因分析

《Spring中Bean有关NullPointerException异常的原因分析》在Spring中使用@Autowired注解注入的bean不能在静态上下文中访问,否则会导致NullPointerE... 目录Spring中Bean有关NullPointerException异常的原因问题描述解决方案总结

Python中的异步:async 和 await以及操作中的事件循环、回调和异常

《Python中的异步:async和await以及操作中的事件循环、回调和异常》在现代编程中,异步操作在处理I/O密集型任务时,可以显著提高程序的性能和响应速度,Python提供了asyn... 目录引言什么是异步操作?python 中的异步编程基础async 和 await 关键字asyncio 模块理论

详解Python中通用工具类与异常处理

《详解Python中通用工具类与异常处理》在Python开发中,编写可重用的工具类和通用的异常处理机制是提高代码质量和开发效率的关键,本文将介绍如何将特定的异常类改写为更通用的ValidationEx... 目录1. 通用异常类:ValidationException2. 通用工具类:Utils3. 示例文

不懂推荐算法也能设计推荐系统

本文以商业化应用推荐为例,告诉我们不懂推荐算法的产品,也能从产品侧出发, 设计出一款不错的推荐系统。 相信很多新手产品,看到算法二字,多是懵圈的。 什么排序算法、最短路径等都是相对传统的算法(注:传统是指科班出身的产品都会接触过)。但对于推荐算法,多数产品对着网上搜到的资源,都会无从下手。特别当某些推荐算法 和 “AI”扯上关系后,更是加大了理解的难度。 但,不了解推荐算法,就无法做推荐系

关于数据埋点,你需要了解这些基本知识

产品汪每天都在和数据打交道,你知道数据来自哪里吗? 移动app端内的用户行为数据大多来自埋点,了解一些埋点知识,能和数据分析师、技术侃大山,参与到前期的数据采集,更重要是让最终的埋点数据能为我所用,否则可怜巴巴等上几个月是常有的事。   埋点类型 根据埋点方式,可以区分为: 手动埋点半自动埋点全自动埋点 秉承“任何事物都有两面性”的道理:自动程度高的,能解决通用统计,便于统一化管理,但个性化定

无人叉车3d激光slam多房间建图定位异常处理方案-墙体画线地图切分方案

墙体画线地图切分方案 针对问题:墙体两侧特征混淆误匹配,导致建图和定位偏差,表现为过门跳变、外月台走歪等 ·解决思路:预期的根治方案IGICP需要较长时间完成上线,先使用切分地图的工程化方案,即墙体两侧切分为不同地图,在某一侧只使用该侧地图进行定位 方案思路 切分原理:切分地图基于关键帧位置,而非点云。 理论基础:光照是直线的,一帧点云必定只能照射到墙的一侧,无法同时照到两侧实践考虑:关