【机器学习】梯度提升和随机森林的概念、两者在python中的实例以及梯度提升和随机森林的区别

2024-09-05 18:20

本文主要是介绍【机器学习】梯度提升和随机森林的概念、两者在python中的实例以及梯度提升和随机森林的区别,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

引言

梯度提升(Gradient Boosting)是一种强大的机器学习技术,它通过迭代地训练决策树来最小化损失函数,以提高模型的预测性能
随机森林(Random Forest)是一种基于树的集成学习算法,它通过组合多个决策树来提高预测的准确性和稳定性

文章目录

  • 引言
  • 一、梯度提升
    • 1.1 基本原理
      • 1.1.1 初始化模型
      • 1.1.2 迭代优化
      • 1.1.3 梯度计算
      • 1.1.4模型更新
    • 1.2 关键步骤
    • 1.3 梯度提升树(GBDT)
    • 1.4 常用库
    • 1.5 总结
  • 二、梯度提升在python中的实例
    • 2.1 代码
    • 2.2 代码解释
  • 三、随机森林
    • 3.1 关键特点
      • 3.1.1 集成学习
      • 3.1.2 数据样本的随机性
      • 3.1.3 特征选择的随机性
      • 3.1.4 不需要大量参数调整
      • 3.1.5 抗过拟合能力
    • 3.2 实现步骤
  • 四、随机森林在python中的实例
    • 4.1 代码
    • 4.2 代码解释
  • 五、随机森林和梯度提升的区别
    • 5.1 训练过程
    • 5.2 树的权重和组合
    • 5.3 特征选择
    • 5.4 泛化能力和过拟合
    • 5.5 计算复杂度
    • 5.6 应用场景
    • 5.7 总结

一、梯度提升

在这里插入图片描述

1.1 基本原理

1.1.1 初始化模型

梯度提升算法从一个简单的模型开始,例如一个常数预测器

1.1.2 迭代优化

在每一轮迭代中,算法会训练一个新的模型来拟合残差(实际值与当前模型预测值之间的差异)。通过这种方式,新模型专注于纠正前一个模型的错误

1.1.3 梯度计算

在每一轮迭代中,算法计算损失函数的梯度,这表示损失函数在当前模型预测值处的斜率。梯度指向损失增加最快的方向

1.1.4模型更新

新训练的模型用于更新当前模型,使其在梯度方向上迈出一步,从而减少损失

1.2 关键步骤

  1. 损失函数:选择一个合适的损失函数,例如平方损失(用于回归问题)或对数损失(用于分类问题)
  2. 决策树:梯度提升通常使用决策树作为基学习器。决策树的深度通常较小,以防止过拟合
  3. 负梯度:计算当前模型的负梯度,这表示损失函数下降最快的方向
  4. 拟合残差:使用决策树拟合负梯度,得到一个新模型
  5. 学习率(Shrinkage):对新模型的贡献进行缩放,以防止过拟合。学习率是一个超参数,通常需要通过交叉验证来调整
  6. 模型更新:将新模型添加到当前模型中,以更新预测
  7. 迭代:重复上述步骤,直到达到预定的迭代次数或损失不再显著下降

1.3 梯度提升树(GBDT)

梯度提升树(Gradient Boosting Decision Tree,GBDT)是梯度提升的一种实现,它使用决策树作为基学习器。GBDT在许多机器学习任务中表现出色,尤其是在结构化数据上

1.4 常用库

在Python中,常用的梯度提升库有:

  • XGBoost
  • LightGBM
  • CatBoost
    这些库提供了高效的梯度提升算法实现,并且具有许多优化和特性,使得模型训练更加快速和准确。

1.5 总结

梯度提升是一种强大的机器学习技术,通过迭代地优化模型来提高预测性能。在实际应用中,合理调整超参数和使用先进的梯度提升库可以帮助我们构建高效、准确的模型

二、梯度提升在python中的实例

可以使用Python中的scikit-learn库来实现梯度提升(Gradient Boosting)。我们将使用梯度提升回归器(Gradient Boosting Regressor)来训练一个模型,并用它来预测一些数据

2.1 代码

以下是一个完整的例子,包括数据生成、模型训练和预测:

# 导入所需的库
from sklearn.datasets import make_regression
from sklearn.model_selection import train_test_split
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.metrics import mean_squared_error
# 生成模拟数据
X, y = make_regression(n_samples=1000, n_features=20, noise=0.1, random_state=42)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 初始化梯度提升回归器
gb_regressor = GradientBoostingRegressor(n_estimators=100, learning_rate=0.1, max_depth=3, random_state=42)
# 训练模型
gb_regressor.fit(X_train, y_train)
# 进行预测
y_pred = gb_regressor.predict(X_test)
# 计算均方误差
mse = mean_squared_error(y_test, y_pred)
print(f"均方误差: {mse}")
# 打印特征重要性
feature_importances = gb_regressor.feature_importances_
print(f"特征重要性: {feature_importances}")

输出结果:
在这里插入图片描述

2.2 代码解释

  • 首先生成了一个包含1000个样本和20个特征的回归数据集
  • 然后将数据集划分为训练集和测试集,其中测试集占20%
  • 接着创建了一个GradientBoostingRegressor对象,并设置了树的数(n_estimators)、学习率(learning_rate)和树的最大深度(max_depth
  • 使用训练集数据训练模型
  • 使用训练好的模型对测试集进行预测
  • 最后,计算了模型的均方误差,并打印了特征的重要性

三、随机森林

在这里插入图片描述

随机森林能够用于分类和回归任务,并且在许多实际应用中表现出色

3.1 关键特点

3.1.1 集成学习

随机森林是由多个决策树组成的集合,每个树都对数据进行投票(分类任务)或取平均值(回归任务)以产生最终的预测

3.1.2 数据样本的随机性

在构建每棵树时,随机森林从原始数据集中随机抽取一个子集进行训练。这种抽样称为“装袋”(Bagging)

3.1.3 特征选择的随机性

在树的每个节点上,随机森林会从所有特征中随机选择一个子集来决定最佳分割点。这增加了树之间的多样性,有助于提高模型的泛化能力

3.1.4 不需要大量参数调整

随机森林通常不需要复杂的参数调整,这使得它成为一个易于使用且效果不错的算法

3.1.5 抗过拟合能力

由于随机森林结合了多个决策树,每个树都在不同的数据子集上训练,因此它通常能够避免过拟合

3.2 实现步骤

  1. 数据抽样:从原始数据集中进行有放回的随机抽样,得到多个训练子集
  2. 树构建:对于每个训练子集,构建一个决策树。在每个节点上,随机选择特征子集,并找到最佳分割点
  3. 树集成:将所有决策树的预测结果进行汇总。对于分类问题,通常采用多数投票;对于回归问题,通常取平均值

四、随机森林在python中的实例

4.1 代码

以下是一个使用scikit-learn库实现随机森林的简单例子

# 导入所需的库
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score
# 加载数据集
iris = load_iris()
X, y = iris.data, iris.target
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# 初始化随机森林分类器
rf_classifier = RandomForestClassifier(n_estimators=100, random_state=42)
# 训练模型
rf_classifier.fit(X_train, y_train)
# 进行预测
y_pred = rf_classifier.predict(X_test)
# 计算准确率
accuracy = accuracy_score(y_test, y_pred)
print(f"准确率: {accuracy}")
# 打印特征重要性
feature_importances = rf_classifier.feature_importances_
print(f"特征重要性: {feature_importances}")

输出结果:
在这里插入图片描述

4.2 代码解释

  • 首先加载了Iris数据集
  • 然后将其划分为训练集和测试集
  • 接着,我们创建了一个RandomForestClassifier对象,并用训练集数据训练了模型
  • 最后,我们评估了模型的准确率并打印了特征的重要性

五、随机森林和梯度提升的区别

梯度提升(Gradient Boosting)和随机森林(Random Forest)都是基于决策树的集成学习算法,但它们在构建集成模型的方式和原理上有显著的不同

5.1 训练过程

  • 梯度提升
    • 采用串行训练方式,每一棵树都是为了纠正前一棵树的错误而训练的
    • 每棵树都是基于残差(实际值与当前模型预测值之间的差异)进行训练的
    • 通过梯度下降在损失函数上迭代优化,逐步构建模型
  • 随机森林
    • 采用并行训练方式,每棵树都是独立地从原始数据集中抽取的子集上进行训练
    • 每棵树的训练不依赖于其他树,它们之间是相互独立的
    • 通过随机选择特征和样本来增加模型的多样性,减少过拟合

5.2 树的权重和组合

  • 梯度提升
    • 每棵树都有不同的权重,这些权重是基于它们减少损失的能力来确定的
    • 最终的预测是所有树预测的加权和
  • 随机森林
    • 所有树在最终预测中的权重是相同的
    • 对于分类问题,通常采用多数投票来决定最终的类别;对于回归问题,通常取所有树预测的平均值

5.3 特征选择

  • 梯度提升
    • 在每个分割点考虑所有特征,选择最佳分割
  • 随机森林
    • 在每个分割点随机选择一个特征子集,并从中选择最佳分割

5.4 泛化能力和过拟合

  • 梯度提升
    • 由于梯度提升专注于减少残差,它可能会对训练数据过度拟合,特别是如果没有适当的正则化或早停机制
  • 随机森林
    • 由于其随机性和独立性,随机森林通常具有较好的泛化能力,对过拟合有一定的抵抗力

5.5 计算复杂度

  • 梯度提升
    • 通常计算成本较高,因为它需要连续地训练多棵树,并且每棵树都要与前一棵树的结果相配合
  • 随机森林
    • 计算成本相对较低,因为树是并行训练的,并且每棵树的训练可以并行化

5.6 应用场景

  • 梯度提升
    • 通常用于需要高预测精度的任务,如广告点击率预测、信用评分等
  • 随机森林
    • 适用于需要快速、稳定预测的场景,如分类问题、特征选择等

5.7 总结

梯度提升和随机森林都是强大的机器学习工具,但它们在模型构建、泛化能力、计算复杂度和适用场景上有所不同。选择哪个算法取决于具体问题的需求、数据特性和性能要求

这篇关于【机器学习】梯度提升和随机森林的概念、两者在python中的实例以及梯度提升和随机森林的区别的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1139716

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

【Python编程】Linux创建虚拟环境并配置与notebook相连接

1.创建 使用 venv 创建虚拟环境。例如,在当前目录下创建一个名为 myenv 的虚拟环境: python3 -m venv myenv 2.激活 激活虚拟环境使其成为当前终端会话的活动环境。运行: source myenv/bin/activate 3.与notebook连接 在虚拟环境中,使用 pip 安装 Jupyter 和 ipykernel: pip instal

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学

系统架构师考试学习笔记第三篇——架构设计高级知识(20)通信系统架构设计理论与实践

本章知识考点:         第20课时主要学习通信系统架构设计的理论和工作中的实践。根据新版考试大纲,本课时知识点会涉及案例分析题(25分),而在历年考试中,案例题对该部分内容的考查并不多,虽在综合知识选择题目中经常考查,但分值也不高。本课时内容侧重于对知识点的记忆和理解,按照以往的出题规律,通信系统架构设计基础知识点多来源于教材内的基础网络设备、网络架构和教材外最新时事热点技术。本课时知识