AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理

本文主要是介绍AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI学习指南深度学习篇——带动量的随机梯度下降法的基本原理

引言

在深度学习中,优化算法被广泛应用于训练神经网络模型。随机梯度下降法(SGD)是最常用的优化算法之一,但单独使用SGD在收敛速度和稳定性方面存在一些问题。为了应对这些挑战,动量法应运而生。本文将详细介绍动量法的原理,包括动量的概念、指数加权移动平均、参数更新等内容,最后通过实际示例展示动量如何帮助SGD在参数更新过程中平稳地前进。

什么是动量?

动量最初是物理学中的一个概念,用于描述物体的运动。动量法在优化算法中引入了一个“动量”项,帮助在优化过程中加速以及平滑更新。动量可以看作是对过去梯度的“回忆”,这种技术使得优化算法能够在一定程度上克服SGD固有的震荡,并在某些方向上加速前进。

动量的基本想法

动量法利用了梯度的历史信息,通常通过对过去几次梯度更新的加权求和,来决定当前参数的更新方向。具体来说,当模型在某一方向上的梯度变化较小,而在另一个方向上的梯度变化较大时,动量法能够加快在有效方向上的更新,从而提高收敛速度。

在动量更新中,我们维护一个动量变量 (v),它根据历史梯度逐步更新。动量变量对当前梯度的影响越来越大,而对较久以前的梯度影响逐渐减小。

指数加权移动平均

动量法的核心在于指数加权移动平均(Exponential Moving Average,EMA)。通过对过去的梯度施加一个衰减因子,EMA 使得新的梯度对更新的影响更大,而较旧的梯度的影响逐渐减小。

公式表示

假设我们在第 (t) 次迭代中计算得到的梯度为 (g_t),动量变量 (v_t) 的更新公式为:
[ v t = β v t − 1 + ( 1 − β ) g t ] [ v_t = \beta v_{t-1} + (1 - \beta) g_t ] [vt=βvt1+(1β)gt]
其中, ( β ) (\beta) (β) 是动量系数,通常设置为接近于1(例如,0.9 或 0.99)。这样,动量变量 ( v t ) (v_t) (vt) 会逐渐地保留历史梯度信息,同时抑制噪声带来的干扰。参数的更新则通过以下公式完成:
[ θ t = θ t − 1 − α v t ] [ \theta_t = \theta_{t-1} - \alpha v_t ] [θt=θt1αvt]

这里, ( α ) (\alpha) (α) 是学习率。

动量在参数更新中的作用

在采用动量法后,参数更新的路径会更加平滑和稳定。具体来说,动量带来的优势主要体现在以下几个方面:

  1. 加速收敛:在深度的损失曲面中,有些方向会出现较大的梯度,而另一些方向的梯度可能会相对较小。动量方法通过对历史梯度的重置,能够在大的梯度方向上加速更新。

  2. 减小震荡:SGD 的震荡通常会导致模型难以在局部最优点附近平稳地收敛。动量法通过平滑的优化路径减少这种震荡,使得更新方向更加稳定。

  3. 逃离局部最优:通过保持较高的动量,有时候模型将能够逃离局部最优点,因为动量会推动参数在一定方向上继续移动。

实际示例

为了更好地理解和运用带动量的随机梯度下降法,我们将展示一个实际示例。假设我们要训练一个简单的线性回归模型,损失函数为均方误差(MSE)。

1. 线性回归模型

模型的预测公式为:
[ y ^ = w x + b ] [ \hat{y} = wx + b ] [y^=wx+b]
其中, ( w ) (w) (w) 是权重, ( b ) (b) (b) 是偏差。损失函数定义为:
[ L ( w , b ) = 1 n ∑ i = 1 n ( y i − y ^ i ) 2 ] [ L(w, b) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 ] [L(w,b)=n1i=1n(yiy^i)2]

2. 梯度计算

对于每个参数 (w) 和 (b),我们需要计算它们的梯度:
[ ∂ L ∂ w = − 2 n ∑ i = 1 n ( y i − y ^ i ) ⋅ x i ] [ \frac{\partial L}{\partial w} = -\frac{2}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i) \cdot x_i ] [wL=n2i=1n(yiy^i)xi]
[ ∂ L ∂ b = − 2 n ∑ i = 1 n ( y i − y ^ i ) ] [ \frac{\partial L}{\partial b} = -\frac{2}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i) ] [bL=n2i=1n(yiy^i)]

3. 动量更新

在训练过程中,我们将使用动量方法更新权重和偏差。以下是代码示例(以 Python 和 NumPy 为例):

import numpy as np# 超参数
alpha = 0.01  # 学习率
beta = 0.9    # 动量系数
num_epochs = 1000  # 训练轮次# 模型参数
w = np.random.randn()  # 权重初始化
b = np.random.randn()  # 偏差初始化# 动量变量初始化
v_w = 0
v_b = 0# 训练数据(示例)
X = np.array([1, 2, 3, 4, 5])
y = np.array([2, 3, 5, 7, 11])# 训练过程
for epoch in range(num_epochs):# 计算预测值y_pred = w * X + b# 计算损失loss = np.mean((y - y_pred) ** 2)# 计算梯度grad_w = -2 * np.mean((y - y_pred) * X)grad_b = -2 * np.mean(y - y_pred)# 更新动量v_w = beta * v_w + (1 - beta) * grad_wv_b = beta * v_b + (1 - beta) * grad_b# 更新参数w -= alpha * v_wb -= alpha * v_bif epoch % 100 == 0:print(f"Epoch {epoch}, Loss: {loss}, w: {w}, b: {b}")print(f"Final parameters: w: {w}, b: {b}")

4. 结果分析

通过上述代码,我们定义了一个简单的线性回归模型,在训练过程中应用动量法以进行参数更新。需要注意的是,我们在每个轮次中计算损失以及参数,通过调整学习率和动量系数,从而观察到模型如何逐步收敛。

在使用动量法后,我们会发现与普通SGD相比,损失下降得更快,参数更新更加平滑,最终得到的模型效果更好。

总结

动量法是优化算法中一个极其重要的概念,它通过对历史梯度的加权平均来稳定参数更新过程,提高收敛速度。通过引入动量,我们能够在训练过程中减少震荡,快速逃离局部最优,达到更好的收敛效果。

本文对动量法的原理、公式以及实践应用进行了详细的介绍,期望能够为你在深度学习的道路上提供有益的帮助。希望在未来的学习中,大家能够深入掌握动量法及其变种,为构建更为复杂和精确的模型奠定基础。

这篇关于AI学习指南深度学习篇-带动量的随机梯度下降法的基本原理的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148054

相关文章

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

Spring AI ectorStore的使用流程

《SpringAIectorStore的使用流程》SpringAI中的VectorStore是一种用于存储和检索高维向量数据的数据库或存储解决方案,它在AI应用中发挥着至关重要的作用,本文给大家介... 目录一、VectorStore的基本概念二、VectorStore的核心接口三、VectorStore的

最新Spring Security实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)

《最新SpringSecurity实战教程之表单登录定制到处理逻辑的深度改造(最新推荐)》本章节介绍了如何通过SpringSecurity实现从配置自定义登录页面、表单登录处理逻辑的配置,并简单模拟... 目录前言改造准备开始登录页改造自定义用户名密码登陆成功失败跳转问题自定义登出前后端分离适配方案结语前言

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

Redis 内存淘汰策略深度解析(最新推荐)

《Redis内存淘汰策略深度解析(最新推荐)》本文详细探讨了Redis的内存淘汰策略、实现原理、适用场景及最佳实践,介绍了八种内存淘汰策略,包括noeviction、LRU、LFU、TTL、Rand... 目录一、 内存淘汰策略概述二、内存淘汰策略详解2.1 ​noeviction(不淘汰)​2.2 ​LR

Spring AI集成DeepSeek三步搞定Java智能应用的详细过程

《SpringAI集成DeepSeek三步搞定Java智能应用的详细过程》本文介绍了如何使用SpringAI集成DeepSeek,一个国内顶尖的多模态大模型,SpringAI提供了一套统一的接口,简... 目录DeepSeek 介绍Spring AI 是什么?Spring AI 的主要功能包括1、环境准备2

Spring AI集成DeepSeek实现流式输出的操作方法

《SpringAI集成DeepSeek实现流式输出的操作方法》本文介绍了如何在SpringBoot中使用Sse(Server-SentEvents)技术实现流式输出,后端使用SpringMVC中的S... 目录一、后端代码二、前端代码三、运行项目小天有话说题外话参考资料前面一篇文章我们实现了《Spring

Spring AI与DeepSeek实战一之快速打造智能对话应用

《SpringAI与DeepSeek实战一之快速打造智能对话应用》本文详细介绍了如何通过SpringAI框架集成DeepSeek大模型,实现普通对话和流式对话功能,步骤包括申请API-KEY、项目搭... 目录一、概述二、申请DeepSeek的API-KEY三、项目搭建3.1. 开发环境要求3.2. mav