✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

2024-09-08 14:44

本文主要是介绍✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1️⃣线性回归(linear regression)

f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b(x)=wx+b

🎈A linear regression model predicting house prices:

在这里插入图片描述

如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^2 feet2时,预测的价格为 220k$。

在这里插入图片描述

🎈Terminology:
线性回归中可能用到的术语及含义
在这里插入图片描述

2️⃣代价函数(cost function)

为了预测出更准确的结果,需要模型更好的拟合程度,对于线性回归模型 f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b(x)=wx+b,我们需要找到合适的参数 w w w b b b,使得拟合程度最高。

在这里插入图片描述
🎉而如何找到合适的 w w w b b b 呢,这时需要通过代价函数(cost function)来进行衡量。我们希望对于每组数据,模型通过 x ( i ) x^{(i)} x(i) 预测出的 y ^ ( i ) \hat{y}^{(i)} y^(i) 接近真实的 y ( i ) y^{(i)} y(i) ,于是有如下的代价函数:

J = 1 2 m ∑ i = 1 m ( y ^ ( i ) − y ( i ) ) 2 J = \frac{1}{2m}\sum_{i=1}^{m}(\hat{y}^{(i)}-y^{(i)})^2 J=2m1i=1m(y^(i)y(i))2

J ( w , b ) = 1 2 m ∑ i = 1 m ( f w , b ( x ( i ) ) − y ( i ) ) 2 J(w,b)=\frac{1}{2m}\sum_{i=1}^{m}(f_{w,b}(x^{(i)})-y^{(i)})^2 J(w,b)=2m1i=1m(fw,b(x(i))y(i))2

✨现在的目标就变为 minimize w , b J ( w , b ) \underset{w, b}{\text{minimize}}J(w,b) w,bminimizeJ(w,b)


为了简单理解代价函数,让 b = 0 b=0 b=0 简化函数,针对 f ( x ) = w x f(x) = wx f(x)=wx 讨论。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

对所有的 w w w 取值最终可以列出一个代价函数:

在这里插入图片描述
可以看到当 w = 1 w=1 w=1 J ( w ) J(w) J(w) 最小,此时的 w w w 即为我们找到的最合适的参数。


当我们不再忽略 b b b ,来研究两个参数 w w w b b b 影响下的代价函数时,它的函数是一个三维图形,此时 J J J 的最小值在这个3D图形的底部:
在这里插入图片描述

假设我们拿一把小刀🔪去水平地给这样的三维图形砍一刀,去看这个横切面,大概可以得到这样的图形:
在这里插入图片描述

回归函数 f w , b f_{w,b} fw,b 和代价函数中的点的对应关系如下:
在这里插入图片描述

3️⃣梯度下降(gradient descent)

✨​ 用于求代价函数 J ( w , b ) J(w,b) J(w,b) 的最小值的方法, α \alpha α 为学习率(learning rate)。
w = w − α ∂ ∂ w J ( w , b ) w=w-\alpha\frac{\partial}{\partial w} J(w, b) w=wαwJ(w,b)

b = b − α ∂ ∂ b J ( w , b ) b=b-\alpha\frac{\partial}{\partial b} J(w, b) b=bαbJ(w,b)

对于一个三维的代价函数,想象成有个小人站在山上一个点,对于自己的360度的方向,需要选择一个方向迈出一步,确保这一步比其他各个方向下降的都要快,然后到达下一个点后以此类推,最终下降到最低点。
在这里插入图片描述
如果从不同的 ( w , b ) (w,b) (w,b) 作为起点,最后降低到的最低点不同,这些谷底被称为 local mininum(局部极小值)

🎉这个梯度下降的过程就是不断调整 w w w b b b 的过程:

在这里插入图片描述


学习率 α \alpha α
在这里插入图片描述

在这里插入图片描述

这篇关于✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148397

相关文章

Android Kotlin 高阶函数详解及其在协程中的应用小结

《AndroidKotlin高阶函数详解及其在协程中的应用小结》高阶函数是Kotlin中的一个重要特性,它能够将函数作为一等公民(First-ClassCitizen),使得代码更加简洁、灵活和可... 目录1. 引言2. 什么是高阶函数?3. 高阶函数的基础用法3.1 传递函数作为参数3.2 Lambda

C++中::SHCreateDirectoryEx函数使用方法

《C++中::SHCreateDirectoryEx函数使用方法》::SHCreateDirectoryEx用于创建多级目录,类似于mkdir-p命令,本文主要介绍了C++中::SHCreateDir... 目录1. 函数原型与依赖项2. 基本使用示例示例 1:创建单层目录示例 2:创建多级目录3. 关键注

C++中函数模板与类模板的简单使用及区别介绍

《C++中函数模板与类模板的简单使用及区别介绍》这篇文章介绍了C++中的模板机制,包括函数模板和类模板的概念、语法和实际应用,函数模板通过类型参数实现泛型操作,而类模板允许创建可处理多种数据类型的类,... 目录一、函数模板定义语法真实示例二、类模板三、关键区别四、注意事项 ‌在C++中,模板是实现泛型编程

kotlin的函数forEach示例详解

《kotlin的函数forEach示例详解》在Kotlin中,forEach是一个高阶函数,用于遍历集合中的每个元素并对其执行指定的操作,它的核心特点是简洁、函数式,适用于需要遍历集合且无需返回值的场... 目录一、基本用法1️⃣ 遍历集合2️⃣ 遍历数组3️⃣ 遍历 Map二、与 for 循环的区别三、高

C语言字符函数和字符串函数示例详解

《C语言字符函数和字符串函数示例详解》本文详细介绍了C语言中字符分类函数、字符转换函数及字符串操作函数的使用方法,并通过示例代码展示了如何实现这些功能,通过这些内容,读者可以深入理解并掌握C语言中的字... 目录一、字符分类函数二、字符转换函数三、strlen的使用和模拟实现3.1strlen函数3.2st

Java进阶学习之如何开启远程调式

《Java进阶学习之如何开启远程调式》Java开发中的远程调试是一项至关重要的技能,特别是在处理生产环境的问题或者协作开发时,:本文主要介绍Java进阶学习之如何开启远程调式的相关资料,需要的朋友... 目录概述Java远程调试的开启与底层原理开启Java远程调试底层原理JVM参数总结&nbsMbKKXJx

MySQL中COALESCE函数示例详解

《MySQL中COALESCE函数示例详解》COALESCE是一个功能强大且常用的SQL函数,主要用来处理NULL值和实现灵活的值选择策略,能够使查询逻辑更清晰、简洁,:本文主要介绍MySQL中C... 目录语法示例1. 替换 NULL 值2. 用于字段默认值3. 多列优先级4. 结合聚合函数注意事项总结C

Java8需要知道的4个函数式接口简单教程

《Java8需要知道的4个函数式接口简单教程》:本文主要介绍Java8中引入的函数式接口,包括Consumer、Supplier、Predicate和Function,以及它们的用法和特点,文中... 目录什么是函数是接口?Consumer接口定义核心特点注意事项常见用法1.基本用法2.结合andThen链

MySQL 日期时间格式化函数 DATE_FORMAT() 的使用示例详解

《MySQL日期时间格式化函数DATE_FORMAT()的使用示例详解》`DATE_FORMAT()`是MySQL中用于格式化日期时间的函数,本文详细介绍了其语法、格式化字符串的含义以及常见日期... 目录一、DATE_FORMAT()语法二、格式化字符串详解三、常见日期时间格式组合四、业务场景五、总结一、

golang panic 函数用法示例详解

《golangpanic函数用法示例详解》在Go语言中,panic用于触发不可恢复的错误,终止函数执行并逐层向上触发defer,最终若未被recover捕获,程序会崩溃,recover用于在def... 目录1. panic 的作用2. 基本用法3. recover 的使用规则4. 错误处理建议5. 常见错