✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降

2024-09-08 14:44

本文主要是介绍✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1️⃣线性回归(linear regression)

f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b(x)=wx+b

🎈A linear regression model predicting house prices:

在这里插入图片描述

如图是机器学习通过监督学习运用线性回归模型来预测房价的例子,当房屋大小为1250 f e e t 2 feet^2 feet2时,预测的价格为 220k$。

在这里插入图片描述

🎈Terminology:
线性回归中可能用到的术语及含义
在这里插入图片描述

2️⃣代价函数(cost function)

为了预测出更准确的结果,需要模型更好的拟合程度,对于线性回归模型 f w , b ( x ) = w x + b f_{w,b}(x) = wx + b fw,b(x)=wx+b,我们需要找到合适的参数 w w w b b b,使得拟合程度最高。

在这里插入图片描述
🎉而如何找到合适的 w w w b b b 呢,这时需要通过代价函数(cost function)来进行衡量。我们希望对于每组数据,模型通过 x ( i ) x^{(i)} x(i) 预测出的 y ^ ( i ) \hat{y}^{(i)} y^(i) 接近真实的 y ( i ) y^{(i)} y(i) ,于是有如下的代价函数:

J = 1 2 m ∑ i = 1 m ( y ^ ( i ) − y ( i ) ) 2 J = \frac{1}{2m}\sum_{i=1}^{m}(\hat{y}^{(i)}-y^{(i)})^2 J=2m1i=1m(y^(i)y(i))2

J ( w , b ) = 1 2 m ∑ i = 1 m ( f w , b ( x ( i ) ) − y ( i ) ) 2 J(w,b)=\frac{1}{2m}\sum_{i=1}^{m}(f_{w,b}(x^{(i)})-y^{(i)})^2 J(w,b)=2m1i=1m(fw,b(x(i))y(i))2

✨现在的目标就变为 minimize w , b J ( w , b ) \underset{w, b}{\text{minimize}}J(w,b) w,bminimizeJ(w,b)


为了简单理解代价函数,让 b = 0 b=0 b=0 简化函数,针对 f ( x ) = w x f(x) = wx f(x)=wx 讨论。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

对所有的 w w w 取值最终可以列出一个代价函数:

在这里插入图片描述
可以看到当 w = 1 w=1 w=1 J ( w ) J(w) J(w) 最小,此时的 w w w 即为我们找到的最合适的参数。


当我们不再忽略 b b b ,来研究两个参数 w w w b b b 影响下的代价函数时,它的函数是一个三维图形,此时 J J J 的最小值在这个3D图形的底部:
在这里插入图片描述

假设我们拿一把小刀🔪去水平地给这样的三维图形砍一刀,去看这个横切面,大概可以得到这样的图形:
在这里插入图片描述

回归函数 f w , b f_{w,b} fw,b 和代价函数中的点的对应关系如下:
在这里插入图片描述

3️⃣梯度下降(gradient descent)

✨​ 用于求代价函数 J ( w , b ) J(w,b) J(w,b) 的最小值的方法, α \alpha α 为学习率(learning rate)。
w = w − α ∂ ∂ w J ( w , b ) w=w-\alpha\frac{\partial}{\partial w} J(w, b) w=wαwJ(w,b)

b = b − α ∂ ∂ b J ( w , b ) b=b-\alpha\frac{\partial}{\partial b} J(w, b) b=bαbJ(w,b)

对于一个三维的代价函数,想象成有个小人站在山上一个点,对于自己的360度的方向,需要选择一个方向迈出一步,确保这一步比其他各个方向下降的都要快,然后到达下一个点后以此类推,最终下降到最低点。
在这里插入图片描述
如果从不同的 ( w , b ) (w,b) (w,b) 作为起点,最后降低到的最低点不同,这些谷底被称为 local mininum(局部极小值)

🎉这个梯度下降的过程就是不断调整 w w w b b b 的过程:

在这里插入图片描述


学习率 α \alpha α
在这里插入图片描述

在这里插入图片描述

这篇关于✨机器学习笔记(二)—— 线性回归、代价函数、梯度下降的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1148397

相关文章

Oracle的to_date()函数详解

《Oracle的to_date()函数详解》Oracle的to_date()函数用于日期格式转换,需要注意Oracle中不区分大小写的MM和mm格式代码,应使用mi代替分钟,此外,Oracle还支持毫... 目录oracle的to_date()函数一.在使用Oracle的to_date函数来做日期转换二.日

C++11的函数包装器std::function使用示例

《C++11的函数包装器std::function使用示例》C++11引入的std::function是最常用的函数包装器,它可以存储任何可调用对象并提供统一的调用接口,以下是关于函数包装器的详细讲解... 目录一、std::function 的基本用法1. 基本语法二、如何使用 std::function

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

hdu1171(母函数或多重背包)

题意:把物品分成两份,使得价值最接近 可以用背包,或者是母函数来解,母函数(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v)(1 + x^v+x^2v+.....+x^num*v) 其中指数为价值,每一项的数目为(该物品数+1)个 代码如下: #include<iostream>#include<algorithm>

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss

【学习笔记】 陈强-机器学习-Python-Ch15 人工神经网络(1)sklearn

系列文章目录 监督学习:参数方法 【学习笔记】 陈强-机器学习-Python-Ch4 线性回归 【学习笔记】 陈强-机器学习-Python-Ch5 逻辑回归 【课后题练习】 陈强-机器学习-Python-Ch5 逻辑回归(SAheart.csv) 【学习笔记】 陈强-机器学习-Python-Ch6 多项逻辑回归 【学习笔记 及 课后题练习】 陈强-机器学习-Python-Ch7 判别分析 【学