用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)

本文主要是介绍用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、学习内容
1. 向量自回归模型 (VAR) 的基本概念与应用

向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。

VAR 模型的一般形式为:

Y_t = c + A_1 Y_{t-1} + A_2 Y_{t-2} + \dots + A_p Y_{t-p} + \epsilon_t

其中:

  • Y_t​ 是时间 t 的变量向量。
  • c 是常数向量。
  • A_1, A_2, \dots, A_p​ 是每个时间滞后的回归系数矩阵。
  • \epsilon_t​ 是误差项向量,假设其均值为 0,方差为常量。
2. 向量误差修正模型 (VECM) 的理论基础与应用

向量误差修正模型 (VECM) 是 VAR 模型的扩展,适用于具有协整关系的非平稳时间序列。VECM 通过捕捉长期均衡关系,建立短期动态调整模型。

VECM 的数学表达式为:

\Delta Y_t = \Pi Y_{t-1} + \sum_{i=1}^{p-1} \Gamma_i \Delta Y_{t-i} + \epsilon_t

其中:

  • \Delta Y_t 是差分后的变量向量。
  • \Pi 是协整矩阵,表示长期均衡关系。
  • \Gamma_i 是短期调整系数矩阵。
  • \epsilon_t  是误差项向量。
3. 多元时间序列分析

VAR 和 VECM 模型适用于多变量时间序列分析,通常用于经济、金融等领域。例如,多个宏观经济变量(如 GDP、通货膨胀率、利率)的相互影响可以通过 VAR 或 VECM 模型进行分析和预测。

二、实战案例

我们将使用 Python 的 statsmodels 库对实际的多元时间序列数据进行 VAR 和 VECM 模型的建模和预测。

(一)使用 VAR 模型的案例

假设我们有一组包含多个宏观经济指标的时间序列数据,如利率、GDP 和通货膨胀率。我们将构建一个 VAR 模型来分析这些变量之间的相互影响。

1. 数据生成与可视化

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.api import VAR# 生成模拟的多变量时间序列数据
np.random.seed(42)
n_obs = 100
dates = pd.date_range(start='2000-01-01', periods=n_obs, freq='Q')
data = pd.DataFrame(np.random.randn(n_obs, 3), columns=['GDP', 'Inflation', 'Interest Rate'], index=dates)# 绘制时间序列
data.plot(subplots=True, figsize=(10, 8), title="Simulated Time Series Data")
plt.show()

代码解释:

  • 我们生成了三个变量的随机时间序列数据,分别表示 GDP、通货膨胀率和利率,并绘制其随时间的变化。

结果输出:

2. 构建 VAR 模型
# 构建 VAR 模型
model = VAR(data)

代码解释:

  • 使用 VAR 模型拟合数据,自动选择最优的滞后阶数。
3. 模型拟合与预测
# 手动设置滞后阶数为 2(或根据需要调整)
lag_order = 2
var_model_fitted = model.fit(lag_order)# 预测未来10个时间点的数据
forecast = var_model_fitted.forecast(data.values[-lag_order:], steps=10)

代码解释:

  • 根据最优的滞后阶数拟合模型,并进行未来 10 个时间点的预测。

4. 预测结果可视化

# 创建一个 DataFrame 来存储预测结果
forecast_df = pd.DataFrame(forecast, index=pd.date_range(start=dates[-1], periods=10, freq='Q'), columns=data.columns)# 绘制预测结果
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(10, 8))
for i, col in enumerate(data.columns):axes[i].plot(data.index, data[col], label='Original')axes[i].plot(forecast_df.index, forecast_df[col], label='Forecast', linestyle='--')axes[i].set_title(col)axes[i].legend()
plt.tight_layout()
plt.show()

代码解释:

  • 绘制每个变量的历史数据和预测数据,展示 VAR 模型的预测能力。

结果输出:

5. 运行结果分析
  1. 滞后阶数选择:程序自动选择最优滞后阶数,以确保模型的拟合效果。
  2. 预测结果:预测的时间序列数据显示了每个变量在未来一段时间内的变化趋势。
(二)使用 VECM 模型的案例

VECM 模型适用于存在协整关系的非平稳时间序列。以下代码展示了如何使用 coint_johansen 函数来检查协整关系,并拟合 VECM 模型。

1. 协整关系检验
from statsmodels.tsa.vector_ar.vecm import VECM# 检查协整关系(Johansen检验)
coint_test = coint_johansen(data, det_order=0, k_ar_diff=1)
print("Eigenvalues:", coint_test.eig)

代码解释:

  • 使用 Johansen 协整检验来确定是否存在协整关系,协整关系表明多个时间序列变量在长期内存在稳定的均衡关系。

结果输出:

Eigenvalues: [0.40232704 0.32765159 0.24829596]
2. 构建 VECM 模型
# 构建 VECM 模型
vecm_model = VECM(data, k_ar_diff=1, coint_rank=1)
vecm_fitted = vecm_model.fit()# 输出 VECM 模型结果
print(vecm_fitted.summary())

代码解释:

  • 基于协整关系构建 VECM 模型,拟合数据并进行预测。

结果输出:

Det. terms outside the coint. relation & lagged endog. parameters for equation GDP 
====================================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------------
L1.GDP              -0.4603      0.087     -5.270      0.000      -0.631      -0.289
L1.Inflation        -0.1867      0.092     -2.040      0.041      -0.366      -0.007
L1.Interest Rate     0.0436      0.066      0.662      0.508      -0.085       0.173
Det. terms outside the coint. relation & lagged endog. parameters for equation Inflation
====================================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------------
L1.GDP              -0.1693      0.093     -1.824      0.068      -0.351       0.013
L1.Inflation        -0.0301      0.097     -0.309      0.757      -0.221       0.161
L1.Interest Rate    -0.1179      0.070     -1.686      0.092      -0.255       0.019
Det. terms outside the coint. relation & lagged endog. parameters for equation Interest Rate
====================================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------------
L1.GDP               0.0756      0.113      0.670      0.503      -0.145       0.297
L1.Inflation        -0.2562      0.118     -2.168      0.030      -0.488      -0.025
L1.Interest Rate    -0.5461      0.085     -6.426      0.000      -0.713      -0.380Loading coefficients (alpha) for equation GDP                 
==============================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ec1           -0.1366      0.052     -2.626      0.009      -0.239      -0.035Loading coefficients (alpha) for equation Inflation              
==============================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ec1            0.3797      0.055      6.869      0.000       0.271       0.488Loading coefficients (alpha) for equation Interest Rate            
==============================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ec1           -0.0588      0.067     -0.876      0.381      -0.191       0.073Cointegration relations for loading-coefficients-column 1           
==============================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
beta.1         1.0000          0          0      0.000       1.000       1.000
beta.2        -2.3190      0.354     -6.545      0.000      -3.013      -1.625
beta.3         0.4073      0.313      1.300      0.193      -0.207       1.021
==============================================================================
3. VECM 模型预测与可视化
# 进行未来的预测
vecm_forecast = vecm_fitted.predict(steps=5)
vecm_forecast_df = pd.DataFrame(vecm_forecast, index=pd.date_range(start=dates[-1], periods=5, freq='Q'), columns=data.columns)# 绘制 VECM 预测结果
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(10, 8))
for i, col in enumerate(data.columns):axes[i].plot(data.index, data[col], label='Original')axes[i].plot(vecm_forecast_df.index, vecm_forecast_df[col], label='Forecast', linestyle='--')axes[i].set_title(f"VECM Forecast: {col}")axes[i].legend()
plt.tight_layout()
plt.show()

代码解释:

  • 对未来 5 个时间点进行预测,并将预测结果与历史数据一起绘制。

结果输出:

4. 运行结果分析
  1. 协整检验结果coint_johansen 函数的结果显示了协整向量的个数(即变量之间的长期关系)。
  2. VECM 模型的预测:VECM 模型捕捉了长期均衡关系,并预测了未来变量的变化趋势。
三、总结

通过 VAR 和 VECM 模型,可以分析多元时间序列中的相互依赖关系。VAR 模型适合用于平稳时间序列,而 VECM 模型则适用于具有协整关系的非平稳时间序列。

这篇关于用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147952

相关文章

windos server2022里的DFS配置的实现

《windosserver2022里的DFS配置的实现》DFS是WindowsServer操作系统提供的一种功能,用于在多台服务器上集中管理共享文件夹和文件的分布式存储解决方案,本文就来介绍一下wi... 目录什么是DFS?优势:应用场景:DFS配置步骤什么是DFS?DFS指的是分布式文件系统(Distr

Golang操作DuckDB实战案例分享

《Golang操作DuckDB实战案例分享》DuckDB是一个嵌入式SQL数据库引擎,它与众所周知的SQLite非常相似,但它是为olap风格的工作负载设计的,DuckDB支持各种数据类型和SQL特性... 目录DuckDB的主要优点环境准备初始化表和数据查询单行或多行错误处理和事务完整代码最后总结Duck

NFS实现多服务器文件的共享的方法步骤

《NFS实现多服务器文件的共享的方法步骤》NFS允许网络中的计算机之间共享资源,客户端可以透明地读写远端NFS服务器上的文件,本文就来介绍一下NFS实现多服务器文件的共享的方法步骤,感兴趣的可以了解一... 目录一、简介二、部署1、准备1、服务端和客户端:安装nfs-utils2、服务端:创建共享目录3、服

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

Python MySQL如何通过Binlog获取变更记录恢复数据

《PythonMySQL如何通过Binlog获取变更记录恢复数据》本文介绍了如何使用Python和pymysqlreplication库通过MySQL的二进制日志(Binlog)获取数据库的变更记录... 目录python mysql通过Binlog获取变更记录恢复数据1.安装pymysqlreplicat

利用Python编写一个简单的聊天机器人

《利用Python编写一个简单的聊天机器人》这篇文章主要为大家详细介绍了如何利用Python编写一个简单的聊天机器人,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 使用 python 编写一个简单的聊天机器人可以从最基础的逻辑开始,然后逐步加入更复杂的功能。这里我们将先实现一个简单的

基于Python开发电脑定时关机工具

《基于Python开发电脑定时关机工具》这篇文章主要为大家详细介绍了如何基于Python开发一个电脑定时关机工具,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 简介2. 运行效果3. 相关源码1. 简介这个程序就像一个“忠实的管家”,帮你按时关掉电脑,而且全程不需要你多做

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

Python实现高效地读写大型文件

《Python实现高效地读写大型文件》Python如何读写的是大型文件,有没有什么方法来提高效率呢,这篇文章就来和大家聊聊如何在Python中高效地读写大型文件,需要的可以了解下... 目录一、逐行读取大型文件二、分块读取大型文件三、使用 mmap 模块进行内存映射文件操作(适用于大文件)四、使用 pand

python实现pdf转word和excel的示例代码

《python实现pdf转word和excel的示例代码》本文主要介绍了python实现pdf转word和excel的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价... 目录一、引言二、python编程1,PDF转Word2,PDF转Excel三、前端页面效果展示总结一