用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)

本文主要是介绍用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、学习内容
1. 向量自回归模型 (VAR) 的基本概念与应用

向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。

VAR 模型的一般形式为:

Y_t = c + A_1 Y_{t-1} + A_2 Y_{t-2} + \dots + A_p Y_{t-p} + \epsilon_t

其中:

  • Y_t​ 是时间 t 的变量向量。
  • c 是常数向量。
  • A_1, A_2, \dots, A_p​ 是每个时间滞后的回归系数矩阵。
  • \epsilon_t​ 是误差项向量,假设其均值为 0,方差为常量。
2. 向量误差修正模型 (VECM) 的理论基础与应用

向量误差修正模型 (VECM) 是 VAR 模型的扩展,适用于具有协整关系的非平稳时间序列。VECM 通过捕捉长期均衡关系,建立短期动态调整模型。

VECM 的数学表达式为:

\Delta Y_t = \Pi Y_{t-1} + \sum_{i=1}^{p-1} \Gamma_i \Delta Y_{t-i} + \epsilon_t

其中:

  • \Delta Y_t 是差分后的变量向量。
  • \Pi 是协整矩阵,表示长期均衡关系。
  • \Gamma_i 是短期调整系数矩阵。
  • \epsilon_t  是误差项向量。
3. 多元时间序列分析

VAR 和 VECM 模型适用于多变量时间序列分析,通常用于经济、金融等领域。例如,多个宏观经济变量(如 GDP、通货膨胀率、利率)的相互影响可以通过 VAR 或 VECM 模型进行分析和预测。

二、实战案例

我们将使用 Python 的 statsmodels 库对实际的多元时间序列数据进行 VAR 和 VECM 模型的建模和预测。

(一)使用 VAR 模型的案例

假设我们有一组包含多个宏观经济指标的时间序列数据,如利率、GDP 和通货膨胀率。我们将构建一个 VAR 模型来分析这些变量之间的相互影响。

1. 数据生成与可视化

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.api import VAR# 生成模拟的多变量时间序列数据
np.random.seed(42)
n_obs = 100
dates = pd.date_range(start='2000-01-01', periods=n_obs, freq='Q')
data = pd.DataFrame(np.random.randn(n_obs, 3), columns=['GDP', 'Inflation', 'Interest Rate'], index=dates)# 绘制时间序列
data.plot(subplots=True, figsize=(10, 8), title="Simulated Time Series Data")
plt.show()

代码解释:

  • 我们生成了三个变量的随机时间序列数据,分别表示 GDP、通货膨胀率和利率,并绘制其随时间的变化。

结果输出:

2. 构建 VAR 模型
# 构建 VAR 模型
model = VAR(data)

代码解释:

  • 使用 VAR 模型拟合数据,自动选择最优的滞后阶数。
3. 模型拟合与预测
# 手动设置滞后阶数为 2(或根据需要调整)
lag_order = 2
var_model_fitted = model.fit(lag_order)# 预测未来10个时间点的数据
forecast = var_model_fitted.forecast(data.values[-lag_order:], steps=10)

代码解释:

  • 根据最优的滞后阶数拟合模型,并进行未来 10 个时间点的预测。

4. 预测结果可视化

# 创建一个 DataFrame 来存储预测结果
forecast_df = pd.DataFrame(forecast, index=pd.date_range(start=dates[-1], periods=10, freq='Q'), columns=data.columns)# 绘制预测结果
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(10, 8))
for i, col in enumerate(data.columns):axes[i].plot(data.index, data[col], label='Original')axes[i].plot(forecast_df.index, forecast_df[col], label='Forecast', linestyle='--')axes[i].set_title(col)axes[i].legend()
plt.tight_layout()
plt.show()

代码解释:

  • 绘制每个变量的历史数据和预测数据,展示 VAR 模型的预测能力。

结果输出:

5. 运行结果分析
  1. 滞后阶数选择:程序自动选择最优滞后阶数,以确保模型的拟合效果。
  2. 预测结果:预测的时间序列数据显示了每个变量在未来一段时间内的变化趋势。
(二)使用 VECM 模型的案例

VECM 模型适用于存在协整关系的非平稳时间序列。以下代码展示了如何使用 coint_johansen 函数来检查协整关系,并拟合 VECM 模型。

1. 协整关系检验
from statsmodels.tsa.vector_ar.vecm import VECM# 检查协整关系(Johansen检验)
coint_test = coint_johansen(data, det_order=0, k_ar_diff=1)
print("Eigenvalues:", coint_test.eig)

代码解释:

  • 使用 Johansen 协整检验来确定是否存在协整关系,协整关系表明多个时间序列变量在长期内存在稳定的均衡关系。

结果输出:

Eigenvalues: [0.40232704 0.32765159 0.24829596]
2. 构建 VECM 模型
# 构建 VECM 模型
vecm_model = VECM(data, k_ar_diff=1, coint_rank=1)
vecm_fitted = vecm_model.fit()# 输出 VECM 模型结果
print(vecm_fitted.summary())

代码解释:

  • 基于协整关系构建 VECM 模型,拟合数据并进行预测。

结果输出:

Det. terms outside the coint. relation & lagged endog. parameters for equation GDP 
====================================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------------
L1.GDP              -0.4603      0.087     -5.270      0.000      -0.631      -0.289
L1.Inflation        -0.1867      0.092     -2.040      0.041      -0.366      -0.007
L1.Interest Rate     0.0436      0.066      0.662      0.508      -0.085       0.173
Det. terms outside the coint. relation & lagged endog. parameters for equation Inflation
====================================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------------
L1.GDP              -0.1693      0.093     -1.824      0.068      -0.351       0.013
L1.Inflation        -0.0301      0.097     -0.309      0.757      -0.221       0.161
L1.Interest Rate    -0.1179      0.070     -1.686      0.092      -0.255       0.019
Det. terms outside the coint. relation & lagged endog. parameters for equation Interest Rate
====================================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------------
L1.GDP               0.0756      0.113      0.670      0.503      -0.145       0.297
L1.Inflation        -0.2562      0.118     -2.168      0.030      -0.488      -0.025
L1.Interest Rate    -0.5461      0.085     -6.426      0.000      -0.713      -0.380Loading coefficients (alpha) for equation GDP                 
==============================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ec1           -0.1366      0.052     -2.626      0.009      -0.239      -0.035Loading coefficients (alpha) for equation Inflation              
==============================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ec1            0.3797      0.055      6.869      0.000       0.271       0.488Loading coefficients (alpha) for equation Interest Rate            
==============================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ec1           -0.0588      0.067     -0.876      0.381      -0.191       0.073Cointegration relations for loading-coefficients-column 1           
==============================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
beta.1         1.0000          0          0      0.000       1.000       1.000
beta.2        -2.3190      0.354     -6.545      0.000      -3.013      -1.625
beta.3         0.4073      0.313      1.300      0.193      -0.207       1.021
==============================================================================
3. VECM 模型预测与可视化
# 进行未来的预测
vecm_forecast = vecm_fitted.predict(steps=5)
vecm_forecast_df = pd.DataFrame(vecm_forecast, index=pd.date_range(start=dates[-1], periods=5, freq='Q'), columns=data.columns)# 绘制 VECM 预测结果
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(10, 8))
for i, col in enumerate(data.columns):axes[i].plot(data.index, data[col], label='Original')axes[i].plot(vecm_forecast_df.index, vecm_forecast_df[col], label='Forecast', linestyle='--')axes[i].set_title(f"VECM Forecast: {col}")axes[i].legend()
plt.tight_layout()
plt.show()

代码解释:

  • 对未来 5 个时间点进行预测,并将预测结果与历史数据一起绘制。

结果输出:

4. 运行结果分析
  1. 协整检验结果coint_johansen 函数的结果显示了协整向量的个数(即变量之间的长期关系)。
  2. VECM 模型的预测:VECM 模型捕捉了长期均衡关系,并预测了未来变量的变化趋势。
三、总结

通过 VAR 和 VECM 模型,可以分析多元时间序列中的相互依赖关系。VAR 模型适合用于平稳时间序列,而 VECM 模型则适用于具有协整关系的非平稳时间序列。

这篇关于用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147952

相关文章

网页解析 lxml 库--实战

lxml库使用流程 lxml 是 Python 的第三方解析库,完全使用 Python 语言编写,它对 XPath表达式提供了良好的支 持,因此能够了高效地解析 HTML/XML 文档。本节讲解如何通过 lxml 库解析 HTML 文档。 pip install lxml lxm| 库提供了一个 etree 模块,该模块专门用来解析 HTML/XML 文档,下面来介绍一下 lxml 库

大模型研发全揭秘:客服工单数据标注的完整攻略

在人工智能(AI)领域,数据标注是模型训练过程中至关重要的一步。无论你是新手还是有经验的从业者,掌握数据标注的技术细节和常见问题的解决方案都能为你的AI项目增添不少价值。在电信运营商的客服系统中,工单数据是客户问题和解决方案的重要记录。通过对这些工单数据进行有效标注,不仅能够帮助提升客服自动化系统的智能化水平,还能优化客户服务流程,提高客户满意度。本文将详细介绍如何在电信运营商客服工单的背景下进行

服务器集群同步时间手记

1.时间服务器配置(必须root用户) (1)检查ntp是否安装 [root@node1 桌面]# rpm -qa|grep ntpntp-4.2.6p5-10.el6.centos.x86_64fontpackages-filesystem-1.41-1.1.el6.noarchntpdate-4.2.6p5-10.el6.centos.x86_64 (2)修改ntp配置文件 [r

python: 多模块(.py)中全局变量的导入

文章目录 global关键字可变类型和不可变类型数据的内存地址单模块(单个py文件)的全局变量示例总结 多模块(多个py文件)的全局变量from x import x导入全局变量示例 import x导入全局变量示例 总结 global关键字 global 的作用范围是模块(.py)级别: 当你在一个模块(文件)中使用 global 声明变量时,这个变量只在该模块的全局命名空

hdu1043(八数码问题,广搜 + hash(实现状态压缩) )

利用康拓展开将一个排列映射成一个自然数,然后就变成了普通的广搜题。 #include<iostream>#include<algorithm>#include<string>#include<stack>#include<queue>#include<map>#include<stdio.h>#include<stdlib.h>#include<ctype.h>#inclu

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

【C++】_list常用方法解析及模拟实现

相信自己的力量,只要对自己始终保持信心,尽自己最大努力去完成任何事,就算事情最终结果是失败了,努力了也不留遗憾。💓💓💓 目录   ✨说在前面 🍋知识点一:什么是list? •🌰1.list的定义 •🌰2.list的基本特性 •🌰3.常用接口介绍 🍋知识点二:list常用接口 •🌰1.默认成员函数 🔥构造函数(⭐) 🔥析构函数 •🌰2.list对象

【Prometheus】PromQL向量匹配实现不同标签的向量数据进行运算

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

让树莓派智能语音助手实现定时提醒功能

最初的时候是想直接在rasa 的chatbot上实现,因为rasa本身是带有remindschedule模块的。不过经过一番折腾后,忽然发现,chatbot上实现的定时,语音助手不一定会有响应。因为,我目前语音助手的代码设置了长时间无应答会结束对话,这样一来,chatbot定时提醒的触发就不会被语音助手获悉。那怎么让语音助手也具有定时提醒功能呢? 我最后选择的方法是用threading.Time