用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)

本文主要是介绍用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、学习内容
1. 向量自回归模型 (VAR) 的基本概念与应用

向量自回归模型 (VAR) 是多元时间序列分析中的一种模型,用于捕捉多个变量之间的相互依赖关系。与单变量自回归模型不同,VAR 模型将多个时间序列作为向量输入,同时对这些变量进行回归分析。

VAR 模型的一般形式为:

Y_t = c + A_1 Y_{t-1} + A_2 Y_{t-2} + \dots + A_p Y_{t-p} + \epsilon_t

其中:

  • Y_t​ 是时间 t 的变量向量。
  • c 是常数向量。
  • A_1, A_2, \dots, A_p​ 是每个时间滞后的回归系数矩阵。
  • \epsilon_t​ 是误差项向量,假设其均值为 0,方差为常量。
2. 向量误差修正模型 (VECM) 的理论基础与应用

向量误差修正模型 (VECM) 是 VAR 模型的扩展,适用于具有协整关系的非平稳时间序列。VECM 通过捕捉长期均衡关系,建立短期动态调整模型。

VECM 的数学表达式为:

\Delta Y_t = \Pi Y_{t-1} + \sum_{i=1}^{p-1} \Gamma_i \Delta Y_{t-i} + \epsilon_t

其中:

  • \Delta Y_t 是差分后的变量向量。
  • \Pi 是协整矩阵,表示长期均衡关系。
  • \Gamma_i 是短期调整系数矩阵。
  • \epsilon_t  是误差项向量。
3. 多元时间序列分析

VAR 和 VECM 模型适用于多变量时间序列分析,通常用于经济、金融等领域。例如,多个宏观经济变量(如 GDP、通货膨胀率、利率)的相互影响可以通过 VAR 或 VECM 模型进行分析和预测。

二、实战案例

我们将使用 Python 的 statsmodels 库对实际的多元时间序列数据进行 VAR 和 VECM 模型的建模和预测。

(一)使用 VAR 模型的案例

假设我们有一组包含多个宏观经济指标的时间序列数据,如利率、GDP 和通货膨胀率。我们将构建一个 VAR 模型来分析这些变量之间的相互影响。

1. 数据生成与可视化

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from statsmodels.tsa.api import VAR# 生成模拟的多变量时间序列数据
np.random.seed(42)
n_obs = 100
dates = pd.date_range(start='2000-01-01', periods=n_obs, freq='Q')
data = pd.DataFrame(np.random.randn(n_obs, 3), columns=['GDP', 'Inflation', 'Interest Rate'], index=dates)# 绘制时间序列
data.plot(subplots=True, figsize=(10, 8), title="Simulated Time Series Data")
plt.show()

代码解释:

  • 我们生成了三个变量的随机时间序列数据,分别表示 GDP、通货膨胀率和利率,并绘制其随时间的变化。

结果输出:

2. 构建 VAR 模型
# 构建 VAR 模型
model = VAR(data)

代码解释:

  • 使用 VAR 模型拟合数据,自动选择最优的滞后阶数。
3. 模型拟合与预测
# 手动设置滞后阶数为 2(或根据需要调整)
lag_order = 2
var_model_fitted = model.fit(lag_order)# 预测未来10个时间点的数据
forecast = var_model_fitted.forecast(data.values[-lag_order:], steps=10)

代码解释:

  • 根据最优的滞后阶数拟合模型,并进行未来 10 个时间点的预测。

4. 预测结果可视化

# 创建一个 DataFrame 来存储预测结果
forecast_df = pd.DataFrame(forecast, index=pd.date_range(start=dates[-1], periods=10, freq='Q'), columns=data.columns)# 绘制预测结果
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(10, 8))
for i, col in enumerate(data.columns):axes[i].plot(data.index, data[col], label='Original')axes[i].plot(forecast_df.index, forecast_df[col], label='Forecast', linestyle='--')axes[i].set_title(col)axes[i].legend()
plt.tight_layout()
plt.show()

代码解释:

  • 绘制每个变量的历史数据和预测数据,展示 VAR 模型的预测能力。

结果输出:

5. 运行结果分析
  1. 滞后阶数选择:程序自动选择最优滞后阶数,以确保模型的拟合效果。
  2. 预测结果:预测的时间序列数据显示了每个变量在未来一段时间内的变化趋势。
(二)使用 VECM 模型的案例

VECM 模型适用于存在协整关系的非平稳时间序列。以下代码展示了如何使用 coint_johansen 函数来检查协整关系,并拟合 VECM 模型。

1. 协整关系检验
from statsmodels.tsa.vector_ar.vecm import VECM# 检查协整关系(Johansen检验)
coint_test = coint_johansen(data, det_order=0, k_ar_diff=1)
print("Eigenvalues:", coint_test.eig)

代码解释:

  • 使用 Johansen 协整检验来确定是否存在协整关系,协整关系表明多个时间序列变量在长期内存在稳定的均衡关系。

结果输出:

Eigenvalues: [0.40232704 0.32765159 0.24829596]
2. 构建 VECM 模型
# 构建 VECM 模型
vecm_model = VECM(data, k_ar_diff=1, coint_rank=1)
vecm_fitted = vecm_model.fit()# 输出 VECM 模型结果
print(vecm_fitted.summary())

代码解释:

  • 基于协整关系构建 VECM 模型,拟合数据并进行预测。

结果输出:

Det. terms outside the coint. relation & lagged endog. parameters for equation GDP 
====================================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------------
L1.GDP              -0.4603      0.087     -5.270      0.000      -0.631      -0.289
L1.Inflation        -0.1867      0.092     -2.040      0.041      -0.366      -0.007
L1.Interest Rate     0.0436      0.066      0.662      0.508      -0.085       0.173
Det. terms outside the coint. relation & lagged endog. parameters for equation Inflation
====================================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------------
L1.GDP              -0.1693      0.093     -1.824      0.068      -0.351       0.013
L1.Inflation        -0.0301      0.097     -0.309      0.757      -0.221       0.161
L1.Interest Rate    -0.1179      0.070     -1.686      0.092      -0.255       0.019
Det. terms outside the coint. relation & lagged endog. parameters for equation Interest Rate
====================================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------------
L1.GDP               0.0756      0.113      0.670      0.503      -0.145       0.297
L1.Inflation        -0.2562      0.118     -2.168      0.030      -0.488      -0.025
L1.Interest Rate    -0.5461      0.085     -6.426      0.000      -0.713      -0.380Loading coefficients (alpha) for equation GDP                 
==============================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ec1           -0.1366      0.052     -2.626      0.009      -0.239      -0.035Loading coefficients (alpha) for equation Inflation              
==============================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ec1            0.3797      0.055      6.869      0.000       0.271       0.488Loading coefficients (alpha) for equation Interest Rate            
==============================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
ec1           -0.0588      0.067     -0.876      0.381      -0.191       0.073Cointegration relations for loading-coefficients-column 1           
==============================================================================coef    std err          z      P>|z|      [0.025      0.975]
------------------------------------------------------------------------------
beta.1         1.0000          0          0      0.000       1.000       1.000
beta.2        -2.3190      0.354     -6.545      0.000      -3.013      -1.625
beta.3         0.4073      0.313      1.300      0.193      -0.207       1.021
==============================================================================
3. VECM 模型预测与可视化
# 进行未来的预测
vecm_forecast = vecm_fitted.predict(steps=5)
vecm_forecast_df = pd.DataFrame(vecm_forecast, index=pd.date_range(start=dates[-1], periods=5, freq='Q'), columns=data.columns)# 绘制 VECM 预测结果
fig, axes = plt.subplots(nrows=3, ncols=1, figsize=(10, 8))
for i, col in enumerate(data.columns):axes[i].plot(data.index, data[col], label='Original')axes[i].plot(vecm_forecast_df.index, vecm_forecast_df[col], label='Forecast', linestyle='--')axes[i].set_title(f"VECM Forecast: {col}")axes[i].legend()
plt.tight_layout()
plt.show()

代码解释:

  • 对未来 5 个时间点进行预测,并将预测结果与历史数据一起绘制。

结果输出:

4. 运行结果分析
  1. 协整检验结果coint_johansen 函数的结果显示了协整向量的个数(即变量之间的长期关系)。
  2. VECM 模型的预测:VECM 模型捕捉了长期均衡关系,并预测了未来变量的变化趋势。
三、总结

通过 VAR 和 VECM 模型,可以分析多元时间序列中的相互依赖关系。VAR 模型适合用于平稳时间序列,而 VECM 模型则适用于具有协整关系的非平稳时间序列。

这篇关于用Python实现时间序列模型实战——Day 14: 向量自回归模型 (VAR) 与向量误差修正模型 (VECM)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147952

相关文章

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

Python Dash框架在数据可视化仪表板中的应用与实践记录

《PythonDash框架在数据可视化仪表板中的应用与实践记录》Python的PlotlyDash库提供了一种简便且强大的方式来构建和展示互动式数据仪表板,本篇文章将深入探讨如何使用Dash设计一... 目录python Dash框架在数据可视化仪表板中的应用与实践1. 什么是Plotly Dash?1.1

使用Java实现通用树形结构构建工具类

《使用Java实现通用树形结构构建工具类》这篇文章主要为大家详细介绍了如何使用Java实现通用树形结构构建工具类,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录完整代码一、设计思想与核心功能二、核心实现原理1. 数据结构准备阶段2. 循环依赖检测算法3. 树形结构构建4. 搜索子

MySQL多列IN查询的实现

《MySQL多列IN查询的实现》多列IN查询是一种强大的筛选工具,它允许通过多字段组合快速过滤数据,本文主要介绍了MySQL多列IN查询的实现,具有一定的参考价值,感兴趣的可以了解一下... 目录一、基础语法:多列 IN 的两种写法1. 直接值列表2. 子查询二、对比传统 OR 的写法三、性能分析与优化1.

在C#中调用Python代码的两种实现方式

《在C#中调用Python代码的两种实现方式》:本文主要介绍在C#中调用Python代码的两种实现方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C#调用python代码的方式1. 使用 Python.NET2. 使用外部进程调用 Python 脚本总结C#调

Python下载Pandas包的步骤

《Python下载Pandas包的步骤》:本文主要介绍Python下载Pandas包的步骤,在python中安装pandas库,我采取的方法是用PIP的方法在Python目标位置进行安装,本文给大... 目录安装步骤1、首先找到我们安装python的目录2、使用命令行到Python安装目录下3、我们回到Py

基于Flask框架添加多个AI模型的API并进行交互

《基于Flask框架添加多个AI模型的API并进行交互》:本文主要介绍如何基于Flask框架开发AI模型API管理系统,允许用户添加、删除不同AI模型的API密钥,感兴趣的可以了解下... 目录1. 概述2. 后端代码说明2.1 依赖库导入2.2 应用初始化2.3 API 存储字典2.4 路由函数2.5 应

Python GUI框架中的PyQt详解

《PythonGUI框架中的PyQt详解》PyQt是Python语言中最强大且广泛应用的GUI框架之一,基于Qt库的Python绑定实现,本文将深入解析PyQt的核心模块,并通过代码示例展示其应用场... 目录一、PyQt核心模块概览二、核心模块详解与示例1. QtCore - 核心基础模块2. QtWid

Python实现自动化接收与处理手机验证码

《Python实现自动化接收与处理手机验证码》在移动互联网时代,短信验证码已成为身份验证、账号注册等环节的重要安全手段,本文将介绍如何利用Python实现验证码的自动接收,识别与转发,需要的可以参考下... 目录引言一、准备工作1.1 硬件与软件需求1.2 环境配置二、核心功能实现2.1 短信监听与获取2.

使用Python实现获取网页指定内容

《使用Python实现获取网页指定内容》在当今互联网时代,网页数据抓取是一项非常重要的技能,本文将带你从零开始学习如何使用Python获取网页中的指定内容,希望对大家有所帮助... 目录引言1. 网页抓取的基本概念2. python中的网页抓取库3. 安装必要的库4. 发送HTTP请求并获取网页内容5. 解