AI学习指南深度学习篇-带动量的随机梯度下降法简介

2024-09-08 08:52

本文主要是介绍AI学习指南深度学习篇-带动量的随机梯度下降法简介,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

AI学习指南深度学习篇 - 带动量的随机梯度下降法简介

引言

在深度学习的广阔领域中,优化算法扮演着至关重要的角色。它们不仅决定了模型训练的效率,还直接影响到模型的最终表现之一。随着神经网络模型的不断深化和复杂化,传统的优化算法在许多领域逐渐暴露出其不足之处。带动量的随机梯度下降法(Momentum SGD)应运而生,并被广泛应用于各类深度学习模型中。

在本篇文章中,我们将深入探讨带动量的随机梯度下降法的背景、重要性,并详细分析其相对于传统SGD的优势和适用场景。通过示例和相关理论,我们将为读者提供一份全面的学习指南。

1. 背景

1.1 随机梯度下降法(SGD)

首先,让我们回顾一下随机梯度下降法(SGD)。SGD是一种优化算法,用于最小化目标函数,通常是一组样本的损失函数。在每次迭代中,SGD随机选择一个样本(或一个小批量样本)进行参数更新。这使得SGD在大规模数据集上表现出色,因为它不需要在每次迭代时计算整个数据集的梯度。

然而,SGD也有其不足之处。SGD的每次更新只受最近一个样本的信息影响,导致更新方向不够稳定,甚至可能在收敛时出现震荡。这种震荡可能导致收敛速度较慢,甚至可能在最小值附近来回跳动,使得最终的收敛效果并不理想。

1.2 带动量的随机梯度下降法

为了解决SGD的不足,带动量的随机梯度下降法被提出。带动量的SGD通过引入“动量”的概念,使得模型在参数更新时,不仅考虑当前梯度,还考虑之前梯度的累积影响。通过这一机制,模型在更新时能够更平滑地跟随最优方向,大大减少了震荡,提高了收敛速度。

2. 带动量的SGD与传统SGD的对比

2.1 更新公式

传统SGD的更新公式如下:

θ t = θ t − 1 − η ∇ J ( θ t − 1 ; x ( i ) , y ( i ) ) \theta_{t} = \theta_{t-1} - \eta \nabla J(\theta_{t-1}; x^{(i)}, y^{(i)}) θt=θt1ηJ(θt1;x(i),y(i))

其中, θ t \theta_{t} θt为参数, η \eta η为学习率, ∇ J \nabla J J为损失函数的梯度。

而带动量的SGD更新公式则为:

v t = β v t − 1 + ( 1 − β ) ∇ J ( θ t − 1 ; x ( i ) , y ( i ) ) v_{t} = \beta v_{t-1} + (1-\beta) \nabla J(\theta_{t-1}; x^{(i)}, y^{(i)}) vt=βvt1+(1β)J(θt1;x(i),y(i))

θ t = θ t − 1 − η v t \theta_{t} = \theta_{t-1} - \eta v_{t} θt=θt1ηvt

在这里, v t v_{t} vt为动量项, β \beta β为动量因子(通常在0.9至0.99之间),它决定了之前梯度对于当前更新的影响程度。

2.2 优势分析

  1. 平滑更新轨迹:带动量的SGD通过引入动量项,使得更新过程更为平滑,能有效抑制震荡现象。在收敛的过程中,可以更快速而稳定地朝向最优解移动。

  2. 加速收敛:在接近最优解时,带动量的SGD能够适当地增加更新步长,从而加速收敛。这在高曲率区域尤为明显,可以显著提高训练速度。

  3. 避免局部最优:通过对历史梯度的积累,带动量的SGD可以克服局部最优的问题。在遇到局部最优时,动量的影响可以使得模型继续向前推进,跳出局部最优区域。

  4. 适用性广:带动量的SGD适用于多种深度学习模型和损失函数,不局限于特定类型的问题,具有普适性。

3. 带动量的SGD的关键参数

3.1 学习率的选择

学习率是影响优化过程的重要参数。选择合适的学习率可以促进模型更快收敛,而不合适的学习率可能导致训练失败。通常,带动量的SGD会结合学习率衰减策略,在训练过程中逐步减小学习率,进一步提高模型的稳定性和收敛性。

3.2 动量因子的调整

动量因子 β \beta β通常设置在0.9到0.99之间。较大的动量因子会使得模型在更新时,更多依赖于历史信息,而较小的动量因子则会更快适应当前梯度的变化。根据实际问题,可以进行交叉验证选择最佳的动量因子。

3.3 批量大小的影响

批量大小(Batch Size)会直接影响SGD和带动量SGD的表现。较大的批量可以提供更准确的梯度估计,但也会增加计算量。通过实验可以找到最适合目标任务的批量大小。

4. 示例

为了更好地说明带动量的SGD的实际应用,下面一个深度学习的实例将帮助我们更进一步理解其实现及效果。我们将使用Python中的深度学习框架Keras来构建一个基本的卷积神经网络(CNN),并比较普通SGD与带动量SGD在CIFAR-10数据集上的表现。

4.1 数据集准备

CIFAR-10是一个常用的计算机视觉数据集,包含10个类别的60000张32x32彩色图像。我们将使用Keras下载并准备数据集。

import tensorflow as tf
from tensorflow.keras import datasets, layers, models# 加载CIFAR-10数据集
(train_images, train_labels), (test_images, test_labels) = datasets.cifar10.load_data()# 正则化数据集
train_images = train_images.astype("float32") / 255.0
test_images = test_images.astype("float32") / 255.0# 类别标签为整型
train_labels = train_labels.flatten()
test_labels = test_labels.flatten()

4.2 构建模型

我们构建一个简单的卷积神经网络,包含几个卷积层和全连接层。

def create_model():model = models.Sequential([layers.Conv2D(32, (3, 3), activation="relu", input_shape=(32, 32, 3)),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation="relu"),layers.MaxPooling2D((2, 2)),layers.Conv2D(64, (3, 3), activation="relu"),layers.Flatten(),layers.Dense(64, activation="relu"),layers.Dense(10, activation="softmax"),])return model

4.3 编译与训练

我们分别使用传统SGD和带动量SGD进行训练,对比其性能。

使用传统SGD进行训练
# 创建模型
model_sgd = create_model()
# 编译模型使用传统SGD
model_sgd.compile(optimizer="sgd", loss="sparse_categorical_crossentropy", metrics=["accuracy"])# 训练模型
model_sgd.fit(train_images, train_labels, epochs=10, batch_size=64, validation_split=0.2)
使用带动量的SGD进行训练
# 创建模型
model_momentum = create_model()
# 编译模型使用带动量的SGD
optimizer_momentum = tf.keras.optimizers.SGD(learning_rate=0.01, momentum=0.9)
model_momentum.compile(optimizer=optimizer_momentum, loss="sparse_categorical_crossentropy", metrics=["accuracy"])# 训练模型
model_momentum.fit(train_images, train_labels, epochs=10, batch_size=64, validation_split=0.2)

4.4 结果对比

训练完成后,我们可以比较两个模型在测试集上的表现。

# 测试传统SGD模型
test_loss, test_acc = model_sgd.evaluate(test_images, test_labels)
print(f"Test accuracy (SGD): {test_acc:.4f}")# 测试带动量的SGD模型
test_loss, test_acc = model_momentum.evaluate(test_images, test_labels)
print(f"Test accuracy (Momentum SGD): {test_acc:.4f}")

4.5 结果分析

通过训练结果的对比,我们可能会发现使用带动量SGD的模型在验证集和测试集上的准确率普遍高于传统SGD。这表明,带动量的SGD有效地加快了模型的收敛速度,并提高了模型的最终表现。

5. 总结

本文深入探讨了带动量的随机梯度下降法(Momentum SGD)的背景、重要性及其相对传统SGD的优势。通过对带动量SGD的更新公式和关键参数进行解析,并结合具体示例,我们看到带动量SGD能够有效改善收敛速度和模型表现。

在深度学习实践中,应根据具体问题选择合适的优化算法,带动量的SGD无疑是众多场景下的优秀选择。希望本篇文章能为您在深度学习的旅程中提供一些有价值的指导与参考。

这篇关于AI学习指南深度学习篇-带动量的随机梯度下降法简介的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1147667

相关文章

HarmonyOS学习(七)——UI(五)常用布局总结

自适应布局 1.1、线性布局(LinearLayout) 通过线性容器Row和Column实现线性布局。Column容器内的子组件按照垂直方向排列,Row组件中的子组件按照水平方向排列。 属性说明space通过space参数设置主轴上子组件的间距,达到各子组件在排列上的等间距效果alignItems设置子组件在交叉轴上的对齐方式,且在各类尺寸屏幕上表现一致,其中交叉轴为垂直时,取值为Vert

Ilya-AI分享的他在OpenAI学习到的15个提示工程技巧

Ilya(不是本人,claude AI)在社交媒体上分享了他在OpenAI学习到的15个Prompt撰写技巧。 以下是详细的内容: 提示精确化:在编写提示时,力求表达清晰准确。清楚地阐述任务需求和概念定义至关重要。例:不用"分析文本",而用"判断这段话的情感倾向:积极、消极还是中性"。 快速迭代:善于快速连续调整提示。熟练的提示工程师能够灵活地进行多轮优化。例:从"总结文章"到"用

AI绘图怎么变现?想做点副业的小白必看!

在科技飞速发展的今天,AI绘图作为一种新兴技术,不仅改变了艺术创作的方式,也为创作者提供了多种变现途径。本文将详细探讨几种常见的AI绘图变现方式,帮助创作者更好地利用这一技术实现经济收益。 更多实操教程和AI绘画工具,可以扫描下方,免费获取 定制服务:个性化的创意商机 个性化定制 AI绘图技术能够根据用户需求生成个性化的头像、壁纸、插画等作品。例如,姓氏头像在电商平台上非常受欢迎,

【前端学习】AntV G6-08 深入图形与图形分组、自定义节点、节点动画(下)

【课程链接】 AntV G6:深入图形与图形分组、自定义节点、节点动画(下)_哔哩哔哩_bilibili 本章十吾老师讲解了一个复杂的自定义节点中,应该怎样去计算和绘制图形,如何给一个图形制作不间断的动画,以及在鼠标事件之后产生动画。(有点难,需要好好理解) <!DOCTYPE html><html><head><meta charset="UTF-8"><title>06

从去中心化到智能化:Web3如何与AI共同塑造数字生态

在数字时代的演进中,Web3和人工智能(AI)正成为塑造未来互联网的两大核心力量。Web3的去中心化理念与AI的智能化技术,正相互交织,共同推动数字生态的变革。本文将探讨Web3与AI的融合如何改变数字世界,并展望这一新兴组合如何重塑我们的在线体验。 Web3的去中心化愿景 Web3代表了互联网的第三代发展,它基于去中心化的区块链技术,旨在创建一个开放、透明且用户主导的数字生态。不同于传统

学习hash总结

2014/1/29/   最近刚开始学hash,名字很陌生,但是hash的思想却很熟悉,以前早就做过此类的题,但是不知道这就是hash思想而已,说白了hash就是一个映射,往往灵活利用数组的下标来实现算法,hash的作用:1、判重;2、统计次数;

AI一键生成 PPT

AI一键生成 PPT 操作步骤 作为一名打工人,是不是经常需要制作各种PPT来分享我的生活和想法。但是,你们知道,有时候灵感来了,时间却不够用了!😩直到我发现了Kimi AI——一个能够自动生成PPT的神奇助手!🌟 什么是Kimi? 一款月之暗面科技有限公司开发的AI办公工具,帮助用户快速生成高质量的演示文稿。 无论你是职场人士、学生还是教师,Kimi都能够为你的办公文

Andrej Karpathy最新采访:认知核心模型10亿参数就够了,AI会打破教育不公的僵局

夕小瑶科技说 原创  作者 | 海野 AI圈子的红人,AI大神Andrej Karpathy,曾是OpenAI联合创始人之一,特斯拉AI总监。上一次的动态是官宣创办一家名为 Eureka Labs 的人工智能+教育公司 ,宣布将长期致力于AI原生教育。 近日,Andrej Karpathy接受了No Priors(投资博客)的采访,与硅谷知名投资人 Sara Guo 和 Elad G

零基础学习Redis(10) -- zset类型命令使用

zset是有序集合,内部除了存储元素外,还会存储一个score,存储在zset中的元素会按照score的大小升序排列,不同元素的score可以重复,score相同的元素会按照元素的字典序排列。 1. zset常用命令 1.1 zadd  zadd key [NX | XX] [GT | LT]   [CH] [INCR] score member [score member ...]

【机器学习】高斯过程的基本概念和应用领域以及在python中的实例

引言 高斯过程(Gaussian Process,简称GP)是一种概率模型,用于描述一组随机变量的联合概率分布,其中任何一个有限维度的子集都具有高斯分布 文章目录 引言一、高斯过程1.1 基本定义1.1.1 随机过程1.1.2 高斯分布 1.2 高斯过程的特性1.2.1 联合高斯性1.2.2 均值函数1.2.3 协方差函数(或核函数) 1.3 核函数1.4 高斯过程回归(Gauss