深度学习常用评价指标(Accuracy、Recall、Precision、HR、F1 score、MAP、MRR、NDCG)——推荐系统

本文主要是介绍深度学习常用评价指标(Accuracy、Recall、Precision、HR、F1 score、MAP、MRR、NDCG)——推荐系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

混淆矩阵

混淆矩阵
P(Positives)N(Negatives)
T(Ture)TP:正样本,预测结果为正TN:负样本,预测结果为正
F(False)FP:正样本,预测结果为负FN:负样本,预测结果为负

总结

Accuracy\frac{TP+TN}{TP+FP+TN+FN}
Recall\frac{TP}{TP+FN}
Precision\frac{TP}{TP+FP}
Hits RatioHR=\frac{1}{N}\sum\limits_{i=1}^{N}{hits(i)}
F1 scoreF1score=2\frac{precision\cdot recall }{precision+ recall} \\ =\frac{2TP}{2TP+FP+FN}
Mean Average PrecisionAP=\frac{1}{R}\sum{Precision(rank)} \\ MAP=\frac{1}{C}\sum{AP}
Mean Reciprocal RankMRR=\frac{1}{N}\sum\limits_{i=1}^{N}{\frac{1}{​{​{p}_{i}}}}
Normalized Discounted Cumulative GainNDCG=\frac{1}{N}\sum\limits_{i=1}^{N}{\frac{1}{lo{​{g}_{2}}({​{p}_{i}}+1)}}

1、准确率(Accuracy)

含义:预测正确的样本在所有样本中的比列。

公式:\frac{TP+TN}{TP+FP+TN+FN}

注:在样本不平衡的情况下,不能作为很好的指标来衡量结果。

2、召回率(Recall)&查全率

含义:预测正确的正样本在所有正样本中所占的比例,即表示有多少比例的用户-物品交互记录包含在最终的预测列表中。

公式:\frac{TP}{TP+FN}

注:准确率和召回率都只能衡量检索性能的一个方面。

3、精确率(Precision)&查准率

含义:在全部预测为正的结果中,被预测正确的正样本所占的比例。

公式:\frac{TP}{TP+FP}

 注:召回率和精确率是一对矛盾的指标,当召回率高的时候,精确率一般很低;精确率高时,召回率一般很低。

4、命中率(Hits Ratio)

含义:预测结果列表中预测正确的样本占所有样本的比例,即用户想要的项目有没有推荐到,强调预测的“准确性”。

公式:HR=\frac{1}{N}\sum\limits_{i=1}^{N}{hits(i)}

N,表示用户总数量

hits(i),表示i个用户访问的值是否在推荐列表中,是则为1,否则为0

5、F1分数(F1 score)

含义:精确率与召回率的调和均值。

公式:F1score=2\frac{precision\cdot recall }{precision+ recall}=\frac{2TP}{2TP+FP+FN}

6、平均精度均值(Mean Average Precision)

Average Precision(AP):平均精确率,在召回率从0到1逐步提高的同时也要保证准确率比较高,AP值尽可能的大。

含义:用多个来衡量性能,多个类别AP的平均值。

公式:AP=\frac{1}{R}\sum{Precision(rank)} \\ MAP=\frac{1}{C}\sum{AP}

7、平均倒数排名(Mean Reciprocal Rank)

含义:平均结果中的排序倒数,表示待推荐的项目是否放在了用户更显眼的位置,强调“顺序性”。

公式:MRR=\frac{1}{N}\sum\limits_{i=1}^{N}{\frac{1}{​{​{p}_{i}}}}

N,表示用户的总数。

pi,表示第i个用户的真实访问值在推荐列表的位置,若推荐列表不存在该值,则pi->∞。

8、归一化折损累计增益(Normalized Discounted Cumulative Gain)

含义:表示归一化加入位置信息度量计算的前p个位置累计得到的效益。

公式:NDCG=\frac{1}{N}\sum\limits_{i=1}^{N}{\frac{1}{lo{​{g}_{2}}({​{p}_{i}}+1)}}

N,表示用户的总数。

pi,表示第i个用户的真实访问值在推荐列表的位置,若推荐列表不存在该值,则pi->∞。

这篇关于深度学习常用评价指标(Accuracy、Recall、Precision、HR、F1 score、MAP、MRR、NDCG)——推荐系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/590755

相关文章

Python将大量遥感数据的值缩放指定倍数的方法(推荐)

《Python将大量遥感数据的值缩放指定倍数的方法(推荐)》本文介绍基于Python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处理,并将所得处理后数据保存为新的遥感影像... 本文介绍基于python中的gdal模块,批量读取大量多波段遥感影像文件,分别对各波段数据加以数值处

在C#中获取端口号与系统信息的高效实践

《在C#中获取端口号与系统信息的高效实践》在现代软件开发中,尤其是系统管理、运维、监控和性能优化等场景中,了解计算机硬件和网络的状态至关重要,C#作为一种广泛应用的编程语言,提供了丰富的API来帮助开... 目录引言1. 获取端口号信息1.1 获取活动的 TCP 和 UDP 连接说明:应用场景:2. 获取硬

JAVA系统中Spring Boot应用程序的配置文件application.yml使用详解

《JAVA系统中SpringBoot应用程序的配置文件application.yml使用详解》:本文主要介绍JAVA系统中SpringBoot应用程序的配置文件application.yml的... 目录文件路径文件内容解释1. Server 配置2. Spring 配置3. Logging 配置4. Ma

Golang的CSP模型简介(最新推荐)

《Golang的CSP模型简介(最新推荐)》Golang采用了CSP(CommunicatingSequentialProcesses,通信顺序进程)并发模型,通过goroutine和channe... 目录前言一、介绍1. 什么是 CSP 模型2. Goroutine3. Channel4. Channe

2.1/5.1和7.1声道系统有什么区别? 音频声道的专业知识科普

《2.1/5.1和7.1声道系统有什么区别?音频声道的专业知识科普》当设置环绕声系统时,会遇到2.1、5.1、7.1、7.1.2、9.1等数字,当一遍又一遍地看到它们时,可能想知道它们是什... 想要把智能电视自带的音响升级成专业级的家庭影院系统吗?那么你将面临一个重要的选择——使用 2.1、5.1 还是

Java 字符数组转字符串的常用方法

《Java字符数组转字符串的常用方法》文章总结了在Java中将字符数组转换为字符串的几种常用方法,包括使用String构造函数、String.valueOf()方法、StringBuilder以及A... 目录1. 使用String构造函数1.1 基本转换方法1.2 注意事项2. 使用String.valu

高效管理你的Linux系统: Debian操作系统常用命令指南

《高效管理你的Linux系统:Debian操作系统常用命令指南》在Debian操作系统中,了解和掌握常用命令对于提高工作效率和系统管理至关重要,本文将详细介绍Debian的常用命令,帮助读者更好地使... Debian是一个流行的linux发行版,它以其稳定性、强大的软件包管理和丰富的社区资源而闻名。在使用

Ubuntu系统怎么安装Warp? 新一代AI 终端神器安装使用方法

《Ubuntu系统怎么安装Warp?新一代AI终端神器安装使用方法》Warp是一款使用Rust开发的现代化AI终端工具,该怎么再Ubuntu系统中安装使用呢?下面我们就来看看详细教程... Warp Terminal 是一款使用 Rust 开发的现代化「AI 终端」工具。最初它只支持 MACOS,但在 20

windows系统下shutdown重启关机命令超详细教程

《windows系统下shutdown重启关机命令超详细教程》shutdown命令是一个强大的工具,允许你通过命令行快速完成关机、重启或注销操作,本文将为你详细解析shutdown命令的使用方法,并提... 目录一、shutdown 命令简介二、shutdown 命令的基本用法三、远程关机与重启四、实际应用

五大特性引领创新! 深度操作系统 deepin 25 Preview预览版发布

《五大特性引领创新!深度操作系统deepin25Preview预览版发布》今日,深度操作系统正式推出deepin25Preview版本,该版本集成了五大核心特性:磐石系统、全新DDE、Tr... 深度操作系统今日发布了 deepin 25 Preview,新版本囊括五大特性:磐石系统、全新 DDE、Tree