深度学习常用评价指标(Accuracy、Recall、Precision、HR、F1 score、MAP、MRR、NDCG)——推荐系统

本文主要是介绍深度学习常用评价指标(Accuracy、Recall、Precision、HR、F1 score、MAP、MRR、NDCG)——推荐系统,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

混淆矩阵

混淆矩阵
P(Positives)N(Negatives)
T(Ture)TP:正样本,预测结果为正TN:负样本,预测结果为正
F(False)FP:正样本,预测结果为负FN:负样本,预测结果为负

总结

Accuracy\frac{TP+TN}{TP+FP+TN+FN}
Recall\frac{TP}{TP+FN}
Precision\frac{TP}{TP+FP}
Hits RatioHR=\frac{1}{N}\sum\limits_{i=1}^{N}{hits(i)}
F1 scoreF1score=2\frac{precision\cdot recall }{precision+ recall} \\ =\frac{2TP}{2TP+FP+FN}
Mean Average PrecisionAP=\frac{1}{R}\sum{Precision(rank)} \\ MAP=\frac{1}{C}\sum{AP}
Mean Reciprocal RankMRR=\frac{1}{N}\sum\limits_{i=1}^{N}{\frac{1}{​{​{p}_{i}}}}
Normalized Discounted Cumulative GainNDCG=\frac{1}{N}\sum\limits_{i=1}^{N}{\frac{1}{lo{​{g}_{2}}({​{p}_{i}}+1)}}

1、准确率(Accuracy)

含义:预测正确的样本在所有样本中的比列。

公式:\frac{TP+TN}{TP+FP+TN+FN}

注:在样本不平衡的情况下,不能作为很好的指标来衡量结果。

2、召回率(Recall)&查全率

含义:预测正确的正样本在所有正样本中所占的比例,即表示有多少比例的用户-物品交互记录包含在最终的预测列表中。

公式:\frac{TP}{TP+FN}

注:准确率和召回率都只能衡量检索性能的一个方面。

3、精确率(Precision)&查准率

含义:在全部预测为正的结果中,被预测正确的正样本所占的比例。

公式:\frac{TP}{TP+FP}

 注:召回率和精确率是一对矛盾的指标,当召回率高的时候,精确率一般很低;精确率高时,召回率一般很低。

4、命中率(Hits Ratio)

含义:预测结果列表中预测正确的样本占所有样本的比例,即用户想要的项目有没有推荐到,强调预测的“准确性”。

公式:HR=\frac{1}{N}\sum\limits_{i=1}^{N}{hits(i)}

N,表示用户总数量

hits(i),表示i个用户访问的值是否在推荐列表中,是则为1,否则为0

5、F1分数(F1 score)

含义:精确率与召回率的调和均值。

公式:F1score=2\frac{precision\cdot recall }{precision+ recall}=\frac{2TP}{2TP+FP+FN}

6、平均精度均值(Mean Average Precision)

Average Precision(AP):平均精确率,在召回率从0到1逐步提高的同时也要保证准确率比较高,AP值尽可能的大。

含义:用多个来衡量性能,多个类别AP的平均值。

公式:AP=\frac{1}{R}\sum{Precision(rank)} \\ MAP=\frac{1}{C}\sum{AP}

7、平均倒数排名(Mean Reciprocal Rank)

含义:平均结果中的排序倒数,表示待推荐的项目是否放在了用户更显眼的位置,强调“顺序性”。

公式:MRR=\frac{1}{N}\sum\limits_{i=1}^{N}{\frac{1}{​{​{p}_{i}}}}

N,表示用户的总数。

pi,表示第i个用户的真实访问值在推荐列表的位置,若推荐列表不存在该值,则pi->∞。

8、归一化折损累计增益(Normalized Discounted Cumulative Gain)

含义:表示归一化加入位置信息度量计算的前p个位置累计得到的效益。

公式:NDCG=\frac{1}{N}\sum\limits_{i=1}^{N}{\frac{1}{lo{​{g}_{2}}({​{p}_{i}}+1)}}

N,表示用户的总数。

pi,表示第i个用户的真实访问值在推荐列表的位置,若推荐列表不存在该值,则pi->∞。

这篇关于深度学习常用评价指标(Accuracy、Recall、Precision、HR、F1 score、MAP、MRR、NDCG)——推荐系统的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/590755

相关文章

Python 中的异步与同步深度解析(实践记录)

《Python中的异步与同步深度解析(实践记录)》在Python编程世界里,异步和同步的概念是理解程序执行流程和性能优化的关键,这篇文章将带你深入了解它们的差异,以及阻塞和非阻塞的特性,同时通过实际... 目录python中的异步与同步:深度解析与实践异步与同步的定义异步同步阻塞与非阻塞的概念阻塞非阻塞同步

SpringBoot如何通过Map实现策略模式

《SpringBoot如何通过Map实现策略模式》策略模式是一种行为设计模式,它允许在运行时选择算法的行为,在Spring框架中,我们可以利用@Resource注解和Map集合来优雅地实现策略模式,这... 目录前言底层机制解析Spring的集合类型自动装配@Resource注解的行为实现原理使用直接使用M

Linux上设置Ollama服务配置(常用环境变量)

《Linux上设置Ollama服务配置(常用环境变量)》本文主要介绍了Linux上设置Ollama服务配置(常用环境变量),Ollama提供了多种环境变量供配置,如调试模式、模型目录等,下面就来介绍一... 目录在 linux 上设置环境变量配置 OllamPOgxSRJfa手动安装安装特定版本查看日志在

Linux系统之主机网络配置方式

《Linux系统之主机网络配置方式》:本文主要介绍Linux系统之主机网络配置方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、查看主机的网络参数1、查看主机名2、查看IP地址3、查看网关4、查看DNS二、配置网卡1、修改网卡配置文件2、nmcli工具【通用

Linux系统之dns域名解析全过程

《Linux系统之dns域名解析全过程》:本文主要介绍Linux系统之dns域名解析全过程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、dns域名解析介绍1、DNS核心概念1.1 区域 zone1.2 记录 record二、DNS服务的配置1、正向解析的配置

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

Mysql中深分页的五种常用方法整理

《Mysql中深分页的五种常用方法整理》在数据量非常大的情况下,深分页查询则变得很常见,这篇文章为大家整理了5个常用的方法,文中的示例代码讲解详细,大家可以根据自己的需求进行选择... 目录方案一:延迟关联 (Deferred Join)方案二:有序唯一键分页 (Cursor-based Paginatio

Python实现常用文本内容提取

《Python实现常用文本内容提取》在日常工作和学习中,我们经常需要从PDF、Word文档中提取文本,本文将介绍如何使用Python编写一个文本内容提取工具,有需要的小伙伴可以参考下... 目录一、引言二、文本内容提取的原理三、文本内容提取的设计四、文本内容提取的实现五、完整代码示例一、引言在日常工作和学

Redis中高并发读写性能的深度解析与优化

《Redis中高并发读写性能的深度解析与优化》Redis作为一款高性能的内存数据库,广泛应用于缓存、消息队列、实时统计等场景,本文将深入探讨Redis的读写并发能力,感兴趣的小伙伴可以了解下... 目录引言一、Redis 并发能力概述1.1 Redis 的读写性能1.2 影响 Redis 并发能力的因素二、

C++ 各种map特点对比分析

《C++各种map特点对比分析》文章比较了C++中不同类型的map(如std::map,std::unordered_map,std::multimap,std::unordered_multima... 目录特点比较C++ 示例代码 ​​​​​​代码解释特点比较1. std::map底层实现:基于红黑