指标专题

风控系统之指标回溯,历史数据重跑

个人博客:无奈何杨(wnhyang) 个人语雀:wnhyang 共享语雀:在线知识共享 Github:wnhyang - Overview 回顾 默认你已经看过之前那篇风控系统指标计算/特征提取分析与实现01,Redis、Zset、模版方法。 其中已经介绍了如何利用redis的zset结构完成指标计算,为了方便这篇文章的介绍,还是在正式开始本篇之前回顾一下。 时间窗口 zset

通达信指标公式解析(2)多彩MACD指标

通达信指标公式解析(2)多彩MACD指标 公式效果展示(结合主力操盘线与生命线)公式代码截图公式代码解析1. **DIF 和 DEA 的定义:**2. **MACD 值的计算与颜色条形:**3. **DIF 和 DEA 之间的带状显示:**4. **柱状线的颜色区分:**5. **价格线的绘制:**6. **金叉与死叉的标注:**7. **不同强度柱状图的绘制:**8. **总结**关于建群

基于yolov8的包装盒纸板破损缺陷测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的包装盒纸板破损缺陷检测系统是一种高效、智能的解决方案,旨在提高生产线上包装盒纸板的质量检测效率与准确性。该系统利用YOLOv8这一前沿的深度学习模型,通过其强大的目标检测能力,能够实时识别并标记出包装盒纸板上的各种破损缺陷,如划痕、撕裂、孔洞等。 在系统中,首先需对包含破损缺陷的包装盒纸板图像进行数据采集和标注,形成训练数据集。随后,利用这些数据进行模型训练,使

Flink实时计算指标对数方案

来源:大数据技术与架构读者投稿 作者:诸葛子房 点击右侧关注,大数据开发领域最强公众号! 点击右侧关注,暴走大数据! By  大数据技术与架构 作者简介: 诸葛子房 ,目前就职于一线互联网公司,从事大数据相关工作,了解互联网、大数据相关内容,一直在学习的路上 。

Flink实战(七十二):监控(四)自定义metrics相关指标(二)

项目实现代码举例: 添加自定义监控指标,以flink1.5的Kafka读取以及写入为例,添加rps、dirtyData等相关指标信息。�kafka读取和写入重点是先拿到RuntimeContex初始化指标,并传递给要使用的序列类,通过重写序列化和反序列化方法,来更新指标信息。 不加指标的kafka数据读取、写入Demo。 public class FlinkEtlTest {priv

Flink实战(七十一):监控(三)自定义metrics相关指标(一)

0 简介 User-defined Metrics 除了系统的 Metrics 之外,Flink 支持自定义 Metrics ,即 User-defined Metrics。上文说的都是系统框架方面,对于自己的业务逻辑也可以用 Metrics 来暴露一些指标,以便进行监控。 User-defined Metrics 现在提及的都是 datastream 的 API,table、sql 可

数仓指标一致性以及核对方法

点击上方蓝色字体,选择“设为星标” 回复”面试“获取更多惊喜 数仓数据质量衡量标准 我们对数仓数据指标质量衡量标准通常有四个维度:正确性、完整性、时效性、一致性。 正确性:正确性代表了指标的可信度,如果一个指标无法保证其正确性,那么是不能提供出去使用,因为很有可能会导致作出错误的业务决策,通常会使用明细数据对比、维度交叉对比、实时对比离线等方式校验数据的正确性;另外一方面可以增加一些DQC

基于yolov8的NEU-DET钢材缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的NEU-DET钢材缺陷检测系统是一种创新的解决方案,旨在通过深度学习技术实现对钢材表面缺陷的自动检测和识别。该系统利用YOLOv8算法,该算法以其高效、准确和实时检测的特点著称。 NEU-DET数据集为该系统提供了丰富的训练资源,涵盖了热轧带钢的六种典型表面缺陷,包括轧制氧化皮、斑块、开裂、点蚀表面、内含物和划痕,每种缺陷均有大量样本,确保了模型的全面性和准确性

基于yolov8的电动车佩戴头盔检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的电动车佩戴头盔检测系统利用了YOLOv8这一先进的目标检测模型,旨在提高电动车骑行者的安全意识,减少因未佩戴头盔而导致的交通事故风险。YOLOv8作为YOLO系列的最新版本,在检测速度和精度上均进行了优化,特别适用于处理复杂场景中的小目标检测。 该系统通过收集并标注包含电动车骑行者图像的数据集,对YOLOv8模型进行训练,使其能够准确识别骑行者是否佩戴头盔。在实

基于yolov8的西红柿缺陷检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的西红柿缺陷检测系统是一个利用深度学习技术的创新项目,旨在通过自动化和智能化的方式提高西红柿缺陷检测的准确性和效率。该系统利用YOLOv8目标检测算法,该算法以其高效性和准确性在目标检测领域表现出色。YOLOv8不仅继承了YOLO系列模型的优势,还引入了新的骨干网络、Anchor-Free检测头以及优化后的损失函数,这些改进使得模型在复杂环境下的检测性能更加优越。

基于yolov5的西红柿成熟度检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv5的西红柿成熟度检测系统是一个利用先进深度学习技术的创新项目,旨在提高西红柿成熟度检测的准确性和效率。该系统以YOLOv5为核心算法,该算法由Ultralytics公司于2020年发布,并在YOLOv3的基础上进行了显著改进。YOLOv5以其高效性和准确性在实时目标检测领域备受关注,特别适用于农业视觉检测任务。 该系统通过收集并预处理大量不同成熟度的西红柿图像数据,

基于yolov8的水面垃圾水面漂浮物检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的水面垃圾与漂浮物检测系统是一种高效、智能的监测解决方案。该系统利用YOLOv8这一前沿的深度学习模型,结合智能视频分析技术,对河道、湖泊等水面的垃圾漂浮物进行实时监测与识别。 YOLOv8作为YOLO系列的最新迭代,以其高准确度和实时检测能力著称。通过复杂的网络架构、优化的训练流程和强大的特征提取能力,YOLOv8能够在各种光照和水质条件下,准确识别包括生活垃圾

jmeter 梯度测试 如何查看TPS、RT指标

TPS= 服务器处理请求总数/花费的总时间 149371 (请求量)÷ 113(1分53秒)=1321/秒 跟汇总报告的吞吐量差不多,可以认为吞吐量=TPS 平均值,中位数,最大值,最小值的单位都是毫秒ms 下载插件梯度插件 https://jmeter-plugins.org/install/Install/ 插件管理器的jar包下载好以后,我们需要把jar包放在lib\ext目录下边

Prometheus通过node_exporter监控Node节点,Node节点的详细指标解读

✨✨ 欢迎大家来到景天科技苑✨✨ 🎈🎈 养成好习惯,先赞后看哦~🎈🎈 🏆 作者简介:景天科技苑 🏆《头衔》:大厂架构师,华为云开发者社区专家博主,阿里云开发者社区专家博主,CSDN全栈领域优质创作者,掘金优秀博主,51CTO博客专家等。 🏆《博客》:Python全栈,前后端开发,小程序开发,人工智能,js逆向,App逆向,网络系统安全,数据分析,Django,fastapi

副本技能-eBay店铺指标调用评论限制

参考资料 eBay API 支持大量应用程序,但是eBay 限制了 API 调用的使用。总调用数限制和调用速率取决于不同的 API。 默认的 API 速率限制是为个人和小型企业设计的。如果您的数量增加,您可以在完成eBay的兼容应用程序检查流程后获得更多的调用次数 。 API 调用使用报告,可以获知当前的每日限额和每日调用量。对于限制, 一天 从太平洋时间 00:00:00(午夜)【北京时间:1

量化交易之图形选股指标:曙光初现

相似系列:量化交易之图形选股指标:红三兵     接前作,继续分析另一个较为经典的买入信号:曙光初现。关于曙光初现,百科是这么说的: 曙光初现是由两支不同颜色的阴阳烛组成,意味着市况由淡转好,通常在一个下跌市况後出现。 第一支烛为处於跌势的大阴烛,显示当日沽盘相当强劲。第二支烛为大阳烛,其开市价必须低於第一支烛的最低价,而收市价则必须高於第一支烛的一半烛身。事实上,若投资者将第一

量化交易之图形选股指标:红三兵

投资标的涨涨跌跌,在一个周期内会形成高点,低点,随着周期的增加会形成一系列直观的图形,就是所谓的K线。在K线的基础上,扩展出海量技术指标,进而形成很多的选股方式,围绕这些方式形成不同的流派,百家争鸣,好不热闹。               那这些东西有没有效呢?接下来尝试从大数据的角度进行分析,选择的分析指标是比较常见的红三兵。 红三兵是指评价的专用股语。指连续阴线后连

基于yolov8的路面垃圾检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv8的路面垃圾检测系统是一种利用深度学习技术实现的高效、精准的路面垃圾检测解决方案。该系统采用了YOLOv8目标检测算法,该算法在速度和精度上均表现出色,能够实时或近实时地检测路面上的垃圾。 系统通过训练YOLOv8模型,使其能够识别并定位多种类型的路面垃圾,如塑料袋、纸屑等。在实际应用中,系统可以支持图片、视频以及摄像头的输入,通过界面实时显示目标位置、检测结果、和

深入理解 Prometheus 数据模型与指标监控

深入理解 Prometheus 数据模型与指标监控 Prometheus 作为一款开源的系统监控和报警工具,其核心在于其独特的数据模型和强大的指标监控能力。为了更好地利用 Prometheus,我们需要深入理解其数据模型的构成、数据的收集方式以及如何定义和使用指标监控。本指南将详细探讨 Prometheus 的数据模型、指标类型、数据收集机制和查询语言(PromQL),帮助你构建对 Promet

基于yolov5的猪只识别计数检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv5的猪只识别计数检测系统是一种创新的农业应用解决方案,它结合了深度学习和计算机视觉技术,专为提高养猪业的管理效率和精确度而设计。该系统利用YOLOv5这一先进的目标检测模型,能够实时、准确地在图像或视频中识别并计数猪只。 YOLOv5以其轻量级、高速和准确的特点著称,特别适合用于复杂多变的农场环境。通过摄像头采集的图像数据,系统能够自动检测并标记出每一头猪的位置和数

基于yolov5的煤矿传送带异物检测系统python源码+onnx模型+评估指标曲线+精美GUI界面

【算法介绍】 基于YOLOv5的煤矿传送带异物检测系统是一种高效、智能的监测解决方案,专为煤矿等复杂工业环境设计。该系统利用YOLOv5深度学习算法,结合现场摄像头,对煤矿传送带上的异物进行实时监测与识别。 YOLOv5以其出色的检测速度和准确性著称,通过将原始图像划分为多个网格,并在每个网格中预测可能的目标边界框,实现对传送带上大块煤、矸石、锚杆、槽钢等异物的快速识别。系统能够自动区分正常物

CpK vs PpK,过程能力指标的精彩对决

Cpk VS Ppk(一)描述 对于Cpk和Ppk这两个概念,大家可能会有无数个疑问!这两个指标我该看哪个?计算有什么差别……那么我们首先来看一下Minitab中对它们俩是怎么描述的。 大多数能力评估都可以分组为以下两种类别中的一种:潜在(组内)和整体能力。每种能力都表示对过程能力的唯一度量。 潜在能力: 潜在能力通常称为过程的“权利”:它忽略子组之间的差异,并显示在消除子组之间的偏移和漂

基于智能巡检机器人的算力评估指标及其应用场景分析

随着工业自动化和智能化的发展,智能巡检机器人在各类复杂环境中的应用日益广泛。机器人通常需要在复杂、多变的环境中自主执行任务,如设备检测、数据采集、故障诊断等。为了确保巡检机器人的高效运行,计算能力(算力)的评估和优化显得尤为重要。 智能巡检机器人概述 智能巡检机器人是一类能够在无人干预下自动执行巡检任务的机器人系统,广泛应用于工业自动化领域。巡检机器人配备了多种传感器和

目标检测和图像语义分割领域的性能评价指标

混淆矩阵 从混淆矩阵出发,再看各项性能评价指标就一目了然了。 1)True positives(TP): 被正确分类到正样本的样本数量,即所预测的正样本中,真实的正样本的数量; 2)False positives(FP): 被错误分类到正样本的样本数量,即所预测的正样本中,实际上是负样本的样本数量; 3)False negatives(FN): 被错误分类到负样本的样本数量,即所预测的负样

spring boot 项目 prometheus 自定义指标收集区分应用环境集群实例ip,使用 grafana 查询--方法耗时分位数指标

spring boot 项目 prometheus 自定义指标收集 auth @author JellyfishMIX - github / blog.jellyfishmix.comLICENSE LICENSE-2.0 说明 网上有很多 promehteus 和 grafana 配置,本文不再重复,只介绍自定义部分。目前只介绍了分位数指标的收集和查询,常用于方法耗时的指标监控。 自定

NLP-信息抽取-NER-2015-BiLSTM+CRF(一):命名实体识别【预测每个词的标签】【评价指标:精确率=识别出正确的实体数/识别出的实体数、召回率=识别出正确的实体数/样本真实实体数】

一、命名实体识别介绍 命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出其位置以及类型。是信息提取, 问答系统, 句法分析, 机器翻译等应用领域的重要基础工具, 在自然语言处理技术走向实用化的过程中占有重要地位. 包含行业, 领域专有名词, 如人名, 地名, 公司名, 机构名, 日期, 时间, 疾病名, 症状名, 手术名称, 软