spring boot 项目 prometheus 自定义指标收集区分应用环境集群实例ip,使用 grafana 查询--方法耗时分位数指标

本文主要是介绍spring boot 项目 prometheus 自定义指标收集区分应用环境集群实例ip,使用 grafana 查询--方法耗时分位数指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

spring boot 项目 prometheus 自定义指标收集

auth

  1. @author JellyfishMIX - github / blog.jellyfishmix.com
  2. LICENSE LICENSE-2.0

说明

  1. 网上有很多 promehteus 和 grafana 配置,本文不再重复,只介绍自定义部分。
  2. 目前只介绍了分位数指标的收集和查询,常用于方法耗时的指标监控。

自定义指标收集

仅引入以下依赖,只能看到 spring actuator 相关指标,看不到自定义指标。

            <!-- spring-boot-actuator 依赖 --><dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-actuator</artifactId><version>2.7.18</version></dependency><!-- prometheus 依赖,和 spring boot 版本需要搭配。spring boot 2.7 搭配 1.10.x 如需升级或降级 spring boot,可以对应 +- 0.1.0--><dependency><groupId>io.micrometer</groupId><artifactId>micrometer-registry-prometheus</artifactId><version>1.10.6</version></dependency>

application.properties 配置

根据需要自定义调整

spring.application.name=spring-boot-explore
server.port=8083
server.servlet.context-path=/explore
# ip:port/actuator/prometheus
management.server.port=9051
management.endpoints.web.exposure.include=*
management.metrics.tags.application=${spring.application.name}

自定义指标的收集需要引入额外依赖

            <!--自定义 prometheus 指标依赖--><dependency><groupId>io.prometheus</groupId><artifactId>simpleclient</artifactId><version>0.16.0</version></dependency><dependency><groupId>io.prometheus</groupId><artifactId>simpleclient_hotspot</artifactId><version>0.16.0</version></dependency><dependency><groupId>io.prometheus</groupId><artifactId>simpleclient_servlet</artifactId><version>0.16.0</version></dependency>

指标收集接口

按照 prometheus 的约定,客户端需要暴露一个接口供收集自定义指标。

import io.prometheus.client.exporter.MetricsServlet;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;/*** @author jellyfishmix* @date 2024/9/1 08:03*/
@Controller
@RequestMapping("/prometheus")
public class PrometheusExportController extends MetricsServlet {@RequestMapping("/exportMetric")@ResponseBodypublic void exportMetric(HttpServletRequest request, HttpServletResponse response) throws IOException {this.doGet(request, response);}
}

暴露后的自定义指标收集端口,路径是自己配置的:

image-20240901103532161

自定义指标示例

    private static final Counter DEMO_COUNTER = Counter.build().name("TestController_compute_counter_demo").help("demo of counter").labelNames("labelName1", "labelNameB").namespace("spring_boot_explore").register(DEFAULT_PROMETHEUS_REGISTRY);
namespace 方法

定义指标的前缀,不能包含中划线-,实际指标会带上 namespace 前缀,namespace 与 name 中间自动被下划线_拼接。

spring_boot_explore_TestController_compute_counter_demo
labelNames 方法

使用哦 Summary 举例,说明一下 Counter.build().labelNames() 方法,表示为此指标设置两个 label,分别命名为 labelName1 和 labelNameB。

.labelNames("labelName1", "labelNameB")

如果设置了 Counter.build().labelNames(),不能直接调用 counter.inc(),会抛 NullPointerException

// Convenience methods./*** Increment the counter with no labels by the given amount.** @throws IllegalArgumentException If amt is negative.*/public void inc(double amt) {noLabelsChild.inc(amt);}

需要调用 summary.labels(“abc”, “123”).observe(),labels 方法中的值表示构造 summary 指标时对应的 labelName 的值。

    @RequestMapping("/sayCounter")@ResponseBodypublic String sayCounter() {DEMO_COUNTER.labels("abc", "123").inc(1);return "hello summary";}

自定义指标区分应用、环境、集群、实例

记录指标的接口

通过 .namespace 和 .labelNames 区分 env 环境名, cluster 集群名, instance 实例信息(一般为ip)

import com.google.common.base.Stopwatch;
import com.jellyfishmix.springbootexplore.server.config.PropertiesLoader;
import io.prometheus.client.CollectorRegistry;
import io.prometheus.client.Counter;
import io.prometheus.client.Summary;
import org.apache.commons.lang3.StringUtils;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;@RequestMapping("/test")
@Controller
public class TestController {private static final CollectorRegistry DEFAULT_PROMETHEUS_REGISTRY = CollectorRegistry.defaultRegistry;private static final String applicationName = PropertiesLoader.getProperty("spring.application.name");private static final String env = PropertiesLoader.getProperty("custom.application.env");private static final String cluster = PropertiesLoader.getProperty("custom.application.cluster");private static final Counter DEMO_COUNTER = Counter.build().name("TestController_compute_counter_demo").help("demo of counter")// env 环境名, cluster 集群名, instance 实例信息(一般为ip).labelNames("env", "cluster", "instance")// namespace 应用名.namespace(applicationName).register(DEFAULT_PROMETHEUS_REGISTRY);private static String instance = getLocalIpAddress();public static String getLocalIpAddress() {try {InetAddress localHost = InetAddress.getLocalHost();return localHost.getHostAddress();} catch (UnknownHostException e) {e.printStackTrace();return StringUtils.EMPTY;}}@RequestMapping("/sayCounter")@ResponseBodypublic String sayCounter() {// 对应 .labelNames 中的 env 环境名, cluster 集群名, instance 实例信息(一般为ip)DEMO_COUNTER.labels(env, cluster, instance).inc(1);return "hello counter";}
}

application.properties 配置,注意 prometheus 指标 namespace 不能用-,需要用_

spring.application.name=spring_boot_explore
custom.application.env=beta
custom.application.cluster=cluster_master
server.port=8083
server.servlet.context-path=/explore

由于 properties 配置无法通过 @Value 在静态方法/字段获取值,因此需要手动加载配置文件来获取 properties 值。

import org.apache.commons.lang3.StringUtils;
import java.io.FileInputStream;
import java.io.InputStream;
import java.lang.management.ManagementFactory;
import java.util.LinkedHashMap;
import java.util.Map;
import java.util.Properties;/*** @author jellyfishmix* @date 2024/9/1 18:45*/
public class PropertiesLoader {private static Map<String, String> propertiesMap = new LinkedHashMap<>();/*** jvm 启动参数中指定 active profile*/private static final String ACTIVE_PROFILE_JVM_ARG_KEY_WORD = "spring.profiles.active=";static {load("application.properties");String activeProfile = null;// 先检查 jvm active profilevar jvmArgs = ManagementFactory.getRuntimeMXBean().getInputArguments();for (String arg : jvmArgs) {if (arg.contains(ACTIVE_PROFILE_JVM_ARG_KEY_WORD)) {int index = arg.indexOf("=");if (index!= -1) {activeProfile = arg.substring(index + 1);}break;}}// jvm 参数未指定 active profile,再尝试使用 application.properties 中指定的if (StringUtils.isEmpty(activeProfile)) {activeProfile = propertiesMap.get("spring.profiles.active");}if (StringUtils.isNotBlank(activeProfile)) {load("application-" + activeProfile + ".properties");}}public static void load(String fileName) {final Properties properties = new Properties();FileInputStream fis = null;InputStream is = null;// 两种加载方式,第一种根据文件路径加载try {fis = new FileInputStream(fileName);properties.load(fis);} catch (Throwable ignored) {// 如果失败了,使用类加载器去 classpath 加载try {final ClassLoader classLoader = PropertiesLoader.class.getClassLoader();is = classLoader.getResourceAsStream(fileName);properties.load(is);} catch (Exception ex) {// can record logreturn;}} finally {try {if (fis != null) {fis.close();}if (is != null) {is.close();}} catch (Throwable ignored) {// do nothing}}propertiesMap.putAll(new LinkedHashMap<String, String>((Map) properties));}public static String getProperty(String key) {return propertiesMap.get(key);}
}

区分应用,环境,集群的效果

image-20240901214356871

分位数指标

  1. prometheus 四种 metrics 类型中,如果不是对性能特别敏感的场景,推荐使用 summary。详情阅读:
    1. summary 和 histogram 指标的简单理解 https://blog.csdn.net/wtan825/article/details/94616813
    2. prometheus 四种 metric 类型介绍 https://prometheus.wang/promql/prometheus-metrics-types.html

使用 summary 监控方法耗时

import com.google.common.base.Stopwatch;
import com.jellyfishmix.springbootexplore.server.config.PropertiesLoader;
import io.prometheus.client.CollectorRegistry;
import io.prometheus.client.Counter;
import io.prometheus.client.Summary;
import org.apache.commons.lang3.StringUtils;
import org.springframework.stereotype.Controller;
import org.springframework.web.bind.annotation.RequestMapping;
import org.springframework.web.bind.annotation.ResponseBody;import java.net.InetAddress;
import java.net.UnknownHostException;
import java.util.concurrent.ThreadLocalRandom;
import java.util.concurrent.TimeUnit;/*** @author jellyfishmix* @date 2024/1/3 23:18*/
@RequestMapping("/test")
@Controller
public class TestController {private static final CollectorRegistry DEFAULT_PROMETHEUS_REGISTRY = CollectorRegistry.defaultRegistry;private static final Summary DEMO_SUMMARY = Summary.build().name("TestController_compute_summary_demo").help("demo of summary").labelNames("labelName1", "labelNameB").quantile(0.5, 0.01).quantile(0.90, 0.01).quantile(0.99, 0.01).register(DEFAULT_PROMETHEUS_REGISTRY);@RequestMapping("/saySummary")@ResponseBodypublic String saySummary() {Stopwatch stopwatch = Stopwatch.createStarted();simulateInterfaceCall();var costMillis = stopwatch.elapsed().toMillis();DEMO_SUMMARY.labels("abc", "123").observe(costMillis);return "hello summary";}private static void simulateInterfaceCall() {// 模拟接口调用的随机耗时int randomDelay = ThreadLocalRandom.current().nextInt(100, 1000);try {TimeUnit.MILLISECONDS.sleep(randomDelay);} catch (InterruptedException e) {Thread.currentThread().interrupt();}}
}
quantile 方法
  1. 说明一下 Summary.build().quantile() 方法。
  2. .50 分位,误差 0.01,会把 [.49, .51] 范围内的指标计入 .50 分位,由于 summary 会在客户端把指标数记录下来,因此允许的误差越多,可以节约的内存占用越多。
  3. 其他分位以此类推。
# .50 分位,误差 0.01
.quantile(0.5, 0.01)
# .90 分位,误差 0.01
.quantile(0.90, 0.01)
# .99 分位,误差 0.01
.quantile(0.99, 0.01)

quantile 方法的详细说明可见 io.prometheus.client.Summary 的类注释,这里摘抄一段:

The Summary class provides different utility methods for observing values, like observe(double), startTimer() and Summary. Timer. observeDuration(), time(Callable), etc.
By default, Summary metrics provide the count and the sum. For example, if you measure latencies of a REST service, the count will tell you how often the REST service was called, and the sum will tell you the total aggregated response time. You can calculate the average response time using a Prometheus query dividing sum / count.
In addition to count and sum, you can configure a Summary to provide quantiles:Summary requestLatency = Summary. build().name("requests_latency_seconds").help("Request latency in seconds.").quantile(0.5, 0.01)    // 0.5 quantile (median) with 0.01 allowed error.quantile(0.95, 0.005)  // 0.95 quantile with 0.005 allowed error// ....register();As an example, a 0.95 quantile of 120ms tells you that 95% of the calls were faster than 120ms, and 5% of the calls were slower than 120ms.
Tracking exact quantiles require a large amount of memory, because all observations need to be stored in a sorted list. Therefore, we allow an error to significantly reduce memory usage.
In the example, the allowed error of 0.005 means that you will not get the exact 0.95 quantile, but anything between the 0.945 quantile and the 0.955 quantile.
Experiments show that the Summary typically needs to keep less than 100 samples to provide that precision, even if you have hundreds of millions of observations.

summary 分位数指标效果示例

image-20240901103720431

grafana 视图

grafana query 填写示例如下,注意正确的分位数查询写法是如下图红圈所示,在 metric 位置填写 quantile = 0.5(客户端收集时填写的具体分位数)。

Screenshot 2024-09-01 at 11.41.23

分位数查询错误示例: operations 中填写 quantile 是错误的写法,可以看到图中,通过 operations 计算出的和真实值差距很大。

Screenshot 2024-09-01 at 11.48.24

这篇关于spring boot 项目 prometheus 自定义指标收集区分应用环境集群实例ip,使用 grafana 查询--方法耗时分位数指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129269

相关文章

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

python获取指定名字的程序的文件路径的两种方法

《python获取指定名字的程序的文件路径的两种方法》本文主要介绍了python获取指定名字的程序的文件路径的两种方法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要... 最近在做项目,需要用到给定一个程序名字就可以自动获取到这个程序在Windows系统下的绝对路径,以下

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

JavaScript中的高级调试方法全攻略指南

《JavaScript中的高级调试方法全攻略指南》什么是高级JavaScript调试技巧,它比console.log有何优势,如何使用断点调试定位问题,通过本文,我们将深入解答这些问题,带您从理论到实... 目录观点与案例结合观点1观点2观点3观点4观点5高级调试技巧详解实战案例断点调试:定位变量错误性能分

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Python中 try / except / else / finally 异常处理方法详解

《Python中try/except/else/finally异常处理方法详解》:本文主要介绍Python中try/except/else/finally异常处理方法的相关资料,涵... 目录1. 基本结构2. 各部分的作用tryexceptelsefinally3. 执行流程总结4. 常见用法(1)多个e

Java实现将HTML文件与字符串转换为图片

《Java实现将HTML文件与字符串转换为图片》在Java开发中,我们经常会遇到将HTML内容转换为图片的需求,本文小编就来和大家详细讲讲如何使用FreeSpire.DocforJava库来实现这一功... 目录前言核心实现:html 转图片完整代码场景 1:转换本地 HTML 文件为图片场景 2:转换 H

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1