目标检测和图像语义分割领域的性能评价指标

2024-09-02 08:18

本文主要是介绍目标检测和图像语义分割领域的性能评价指标,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

混淆矩阵

从混淆矩阵出发,再看各项性能评价指标就一目了然了。
Alt
1)True positives(TP): 被正确分类到正样本的样本数量,即所预测的正样本中,真实的正样本的数量;
2)False positives(FP): 被错误分类到正样本的样本数量,即所预测的正样本中,实际上是负样本的样本数量;
3)False negatives(FN): 被错误分类到负样本的样本数量,即所预测的负样本中,实际上是正样本的样本数量;
4)True negatives(TN): 被正确分类到负样本的样本数量,即所预测的负样本中,真实的负样本的样本数量。
5)Condition positive(CP): True positive+False negative,实际上的正样本数量(数据集中真实的正样本数量)。
6)Condition negative(CN): False positive+True negative,实际上的负样本数量(数据集中真实的负样本数量)。
7)Predicted condition positive(PCP): True positive+False positive,所预测的负样本数量。
8)Predicted condition negative(PCN): False negative+True negative,所预测的负样本数量。

1. Recall、True positive rate (TPR)、Sensitivity

    首先看公式,Recall就是所有被正确预测为正样本的样本数量与真实的正样本的总数量的比值。Recall又叫做召回率,意思就是说在所有的正样本中,被正确找出来的样本的比例。
R e c a l l = ∑ T r u e   p o s i t i v e ∑ C o n t i d i o n   p o s i t i v e Recall=\frac{\sum{True\ positive}}{\sum{Contidion\ positive}} Recall=Contidion positiveTrue positive

2. Precision、Positive predictive value (PPV)

    Precision叫做精确度或者精度,表示在所有预测为正样本的数据中,有多少是真正的正样本。
P r e c i s i o n = ∑ T r u e   p o s i t i v e ∑ P r e d i c t e d   c o n d i t i o n   p o s i t i v e Precision=\frac{\sum{True\ positive}}{\sum{Predicted \ condition\ positive}} Precision=Predicted condition positiveTrue positive

3. Accuracy (ACC)

    Accuracy叫做准确度,表示在所有的样本数据中,有多少是被正确预测的(包括正样本和负样本)。
A c c u r a c y = ∑ T r u e   p o s i t i v e + ∑ T r u e   n e

这篇关于目标检测和图像语义分割领域的性能评价指标的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1129461

相关文章

SpringBoot使用Apache Tika检测敏感信息

《SpringBoot使用ApacheTika检测敏感信息》ApacheTika是一个功能强大的内容分析工具,它能够从多种文件格式中提取文本、元数据以及其他结构化信息,下面我们来看看如何使用Ap... 目录Tika 主要特性1. 多格式支持2. 自动文件类型检测3. 文本和元数据提取4. 支持 OCR(光学

C#使用yield关键字实现提升迭代性能与效率

《C#使用yield关键字实现提升迭代性能与效率》yield关键字在C#中简化了数据迭代的方式,实现了按需生成数据,自动维护迭代状态,本文主要来聊聊如何使用yield关键字实现提升迭代性能与效率,感兴... 目录前言传统迭代和yield迭代方式对比yield延迟加载按需获取数据yield break显式示迭

基于WinForm+Halcon实现图像缩放与交互功能

《基于WinForm+Halcon实现图像缩放与交互功能》本文主要讲述在WinForm中结合Halcon实现图像缩放、平移及实时显示灰度值等交互功能,包括初始化窗口的不同方式,以及通过特定事件添加相应... 目录前言初始化窗口添加图像缩放功能添加图像平移功能添加实时显示灰度值功能示例代码总结最后前言本文将

使用Python将长图片分割为若干张小图片

《使用Python将长图片分割为若干张小图片》这篇文章主要为大家详细介绍了如何使用Python将长图片分割为若干张小图片,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. python需求的任务2. Python代码的实现3. 代码修改的位置4. 运行结果1. Python需求

Java实现任务管理器性能网络监控数据的方法详解

《Java实现任务管理器性能网络监控数据的方法详解》在现代操作系统中,任务管理器是一个非常重要的工具,用于监控和管理计算机的运行状态,包括CPU使用率、内存占用等,对于开发者和系统管理员来说,了解这些... 目录引言一、背景知识二、准备工作1. Maven依赖2. Gradle依赖三、代码实现四、代码详解五

C#中字符串分割的多种方式

《C#中字符串分割的多种方式》在C#编程语言中,字符串处理是日常开发中不可或缺的一部分,字符串分割是处理文本数据时常用的操作,它允许我们将一个长字符串分解成多个子字符串,本文给大家介绍了C#中字符串分... 目录1. 使用 string.Split2. 使用正则表达式 (Regex.Split)3. 使用

如何用Java结合经纬度位置计算目标点的日出日落时间详解

《如何用Java结合经纬度位置计算目标点的日出日落时间详解》这篇文章主详细讲解了如何基于目标点的经纬度计算日出日落时间,提供了在线API和Java库两种计算方法,并通过实际案例展示了其应用,需要的朋友... 目录前言一、应用示例1、天安门升旗时间2、湖南省日出日落信息二、Java日出日落计算1、在线API2

如何评价Ubuntu 24.04 LTS? Ubuntu 24.04 LTS新功能亮点和重要变化

《如何评价Ubuntu24.04LTS?Ubuntu24.04LTS新功能亮点和重要变化》Ubuntu24.04LTS即将发布,带来一系列提升用户体验的显著功能,本文深入探讨了该版本的亮... Ubuntu 24.04 LTS,代号 Noble NumBAT,正式发布下载!如果你在使用 Ubuntu 23.

正则表达式高级应用与性能优化记录

《正则表达式高级应用与性能优化记录》本文介绍了正则表达式的高级应用和性能优化技巧,包括文本拆分、合并、XML/HTML解析、数据分析、以及性能优化方法,通过这些技巧,可以更高效地利用正则表达式进行复杂... 目录第6章:正则表达式的高级应用6.1 模式匹配与文本处理6.1.1 文本拆分6.1.2 文本合并6

Vue3 的 shallowRef 和 shallowReactive:优化性能

大家对 Vue3 的 ref 和 reactive 都很熟悉,那么对 shallowRef 和 shallowReactive 是否了解呢? 在编程和数据结构中,“shallow”(浅层)通常指对数据结构的最外层进行操作,而不递归地处理其内部或嵌套的数据。这种处理方式关注的是数据结构的第一层属性或元素,而忽略更深层次的嵌套内容。 1. 浅层与深层的对比 1.1 浅层(Shallow) 定义