[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-2(4) 质量刚体的在坐标系下运动

本文主要是介绍[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-2(4) 质量刚体的在坐标系下运动,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文仅供学习使用,总结很多本现有讲述运动学或动力学书籍后的总结,从矢量的角度进行分析,方法比较传统,但更易理解,并且现有的看似抽象方法,两者本质上并无不同。

2024年底本人学位论文发表后方可摘抄
若有帮助请引用
本文参考:
黎 旭,陈 强 洪,甄 文 强 等.惯 性 张 量 平 移 和 旋 转 复 合 变 换 的 一 般 形 式 及 其 应 用[J].工 程 数 学 学 报,2022,39(06):1005-1011.

食用方法
质量点的动量与角动量
刚体的动量与角动量——力与力矩的关系
惯性矩阵的表达与推导——在刚体运动过程中的作用
惯性矩阵在不同坐标系下的表达
务必自己推导全部公式,并理解每个符号的含义

机构运动学与动力学分析与建模 Ch00-2质量刚体的在坐标系下运动Part4

      • 2.2.4 牛顿-欧拉方程 Netwon-Euler equation
    • 2.3 惯性矩阵的转换 Inertia-Matrix Transformation
    • 2.4 惯性矩阵的主轴定理} Principal Axis Theorem


H ⃗ Σ M / O F \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F} H ΣM/OF进一步处理可得: H ⃗ Σ M / O F = ∑ i N m P i ⋅ R ⃗ O P i F × ( ω ⃗ F × R ⃗ O P i F ) = ∑ i N m P i ⋅ R ⃗ O P i F × ( − R ⃗ O P i F × ω ⃗ F ) = ∑ i N m P i ⋅ R ⃗ ~ O P i F ( − R ⃗ ~ O P i F ) ω ⃗ F \vec{H}_{\Sigma _{\mathrm{M}}/\mathrm{O}}^{F}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( \vec{\omega}^F\times \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \left( -\vec{R}_{\mathrm{OP}_{\mathrm{i}}}^{F}\times \vec{\omega}^F \right)}=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \tilde{\vec{R}}_{\mathrm{OP}_{\mathrm{i}}}^{F}\left( -\tilde{\vec{R}}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)}\vec{\omega}^F H ΣM/OF=iNmPiR OPiF×(ω F×R OPiF)=iNmPiR OPiF×(R OPiF×ω F)=iNmPiR ~OPiF(R ~OPiF)ω F。进而得出: ⇒ [ I ] = ∑ i N m P i ⋅ R ⃗ ~ O P i F ( − R ⃗ ~ O P i F ) \Rightarrow \left[ I \right] =\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \tilde{\vec{R}}_{\mathrm{OP}_{\mathrm{i}}}^{F}\left( -\tilde{\vec{R}}_{\mathrm{OP}_{\mathrm{i}}}^{F} \right)} [I]=iNmPiR ~OPiF(R ~OPiF)

2.2.4 牛顿-欧拉方程 Netwon-Euler equation

刚体动力学中常用:
{ F ⃗ Σ M F = m t o t a l ⋅ a ⃗ G F M ⃗ Σ M / G F = [ I ] Σ M / G F α ⃗ M F + ω ⃗ M F × ( [ I ] Σ M / G F ⋅ ω ⃗ M F ) \begin{cases} \vec{F}_{\Sigma _{\mathrm{M}}}^{F}=m_{\mathrm{total}}\cdot \vec{a}_{\mathrm{G}}^{F}\\ \vec{M}_{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}=\left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\vec{\alpha}_{\mathrm{M}}^{F}+\vec{\omega}_{\mathrm{M}}^{F}\times \left( \left[ I \right] _{\Sigma _{\mathrm{M}}/\mathrm{G}}^{F}\cdot \vec{\omega}_{\mathrm{M}}^{F} \right)\\ \end{cases} {F ΣMF=mtotala GFM ΣM/GF=[I]ΣM/GFα MF+ω MF×([I]ΣM/GFω MF)

2.3 惯性矩阵的转换 Inertia-Matrix Transformation

对于空间中的运动刚体而言,刚体的惯性矩阵一般会根据运动坐标系 { M } \left\{ M \right\} \,\, {M}的基矢量为基底进行计算,而不会直接考虑运动刚体在固定坐标系 { F } \left\{ F \right\} \,\, {F}下的惯性矩阵。此时运动坐标系 { M } \left\{ M \right\} \,\, {M}下计算得出的惯性矩阵记为: [ I ] M \left[ I \right] ^M [I]M。若运动坐标系 { M } \left\{ M \right\} \,\, {M}与固定坐标系 { F } \left\{ F \right\} \,\, {F}的基矢量满足: [ i ⃗ M j ⃗ M k ⃗ M ] = [ Q M F ] T [ I ^ J ^ K ^ ] \left[ \begin{array}{c} \vec{i}^M\\ \vec{j}^M\\ \vec{k}^M\\ \end{array} \right] =\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \hat{I}\\ \hat{J}\\ \hat{K}\\ \end{array} \right] i Mj Mk M =[QMF]T I^J^K^ ,其中 [ Q M F ] T \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}} [QMF]T转换矩阵Transition Matrix,为正交矩阵Orthogonal Matrix(满足 [ Q M F ] T = [ Q M F ] − 1 = [ Q F M ] \left[ Q_{\mathrm{M}}^{F} \right] ^T=\left[ Q_{\mathrm{M}}^{F} \right] ^{-1}=\left[ Q_{\mathrm{F}}^{M} \right] [QMF]T=[QMF]1=[QFM]), [ Q M F ] \left[ Q_{\mathrm{M}}^{F} \right] [QMF]又称旋转矩阵Rotation~Matrix
(一个向量乘以一个正交阵,相当于对这个向量进行旋转)。也揭示了该矩阵的两个作用:基底转换(转换矩阵 [ Q M F ] T \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}} [QMF]T)与向量旋转(旋转矩阵 [ Q M F ] \left[ Q_{\mathrm{M}}^{F} \right] [QMF]),则考虑最开始的图有:
在这里插入图片描述
R ⃗ P i F = R ⃗ M F + [ Q M F ] R ⃗ P i M \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}=\vec{R}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} R PiF=R MF+[QMF]R PiM

进而分析惯性矩阵,若 O O O 点与固定坐标系原点 F F F 重合,则有:
[ I ] Σ M F = ∑ i N m P i ⋅ [ ( R ⃗ P i F ) T R ⃗ P i F ⋅ E − R ⃗ P i F ( R ⃗ P i F ) T ] = ∑ i N m P i ⋅ [ ( R ⃗ M F + [ Q M F ] R ⃗ P i M ) T ( R ⃗ M F + [ Q M F ] R ⃗ P i M ) ⋅ E − ( R ⃗ M F + [ Q M F ] R ⃗ P i M ) ( R ⃗ M F + [ Q M F ] R ⃗ P i M ) T ] = { m t o t a l ⋅ [ ( R ⃗ M F ) T R ⃗ M F ⋅ E − R ⃗ M F ( R ⃗ M F ) T ] ⏟ [ I 1 ] Σ M F + [ Q M F ] ( ∑ i N m P i ⋅ [ ( R ⃗ P i M ) T R ⃗ P i M ⋅ E − R ⃗ P i M ( R ⃗ P i M ) T ] ) [ Q M F ] T + ⏟ [ I 2 ] Σ M F m t o t a l ⋅ [ ( R ⃗ M F ) T ( [ Q M F ] R ⃗ C o M M ) ⋅ E − R ⃗ M F ( [ Q M F ] R ⃗ C o M M ) T ] ⏟ [ I 3 ] Σ M F + m t o t a l ⋅ [ ( [ Q M F ] R ⃗ C o M M ) T R ⃗ M F ⋅ E − ( [ Q M F ] R ⃗ C o M M ) ( R ⃗ M F ) T ] ⏟ [ I 4 ] Σ M F = [ I 1 ] Σ M F + [ I 2 ] Σ M F + [ I 3 ] Σ M F + [ I 4 ] Σ M F \begin{split} \left[ I \right] _{\Sigma _{\mathrm{M}}}^{F}&=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F} \right) ^T\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}\cdot E-\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F}\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{F} \right) ^T \right]} \\ &=\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( \vec{R}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}}\left( \vec{R}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) \cdot E-\left( \vec{R}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) \left( \vec{R}_{\mathrm{M}}^{F}+\left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}} \right]} \\ &=\left\{ \begin{array}{c} \begin{array}{c} \underbrace{m_{\mathrm{total}}\cdot \left[ \left( \vec{R}_{\mathrm{M}}^{F} \right) ^{\mathrm{T}}\vec{R}_{\mathrm{M}}^{F}\cdot E-\vec{R}_{\mathrm{M}}^{F}\left( \vec{R}_{\mathrm{M}}^{F} \right) ^{\mathrm{T}} \right] }\\ \left[ I_1 \right] _{\Sigma _{\mathrm{M}}}^{F}\\ \end{array}+\\ \begin{array}{c} \underbrace{\left[ Q_{\mathrm{M}}^{F} \right] \left( \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}}\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\cdot E-\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}} \right]} \right) \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}+}\\ \left[ I_2 \right] _{\Sigma _{\mathrm{M}}}^{F}\\ \end{array}\\ \begin{array}{c} \underbrace{m_{\mathrm{total}}\cdot \left[ \left( \vec{R}_{\mathrm{M}}^{F} \right) ^{\mathrm{T}}\left( \left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{CoM}}^{M} \right) \cdot E-\vec{R}_{\mathrm{M}}^{F}\left( \left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{CoM}}^{M} \right) ^{\mathrm{T}} \right] }\\ \left[ I_3 \right] _{\Sigma _{\mathrm{M}}}^{F}\\ \end{array}+\\ \begin{array}{c} \underbrace{m_{\mathrm{total}}\cdot \left[ \left( \left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{CoM}}^{M} \right) ^T\vec{R}_{\mathrm{M}}^{F}\cdot E-\left( \left[ Q_{\mathrm{M}}^{F} \right] \vec{R}_{\mathrm{CoM}}^{M} \right) \left( \vec{R}_{\mathrm{M}}^{F} \right) ^{\mathrm{T}} \right] }\\ \left[ I_4 \right] _{\Sigma _{\mathrm{M}}}^{F}\\ \end{array}\\ \end{array} \right. \\ &=\left[ I_1 \right] _{\Sigma _{\mathrm{M}}}^{F}+\left[ I_2 \right] _{\Sigma _{\mathrm{M}}}^{F}+\left[ I_3 \right] _{\Sigma _{\mathrm{M}}}^{F}+\left[ I_4 \right] _{\Sigma _{\mathrm{M}}}^{F} \end{split} [I]ΣMF=iNmPi[(R PiF)TR PiFER PiF(R PiF)T]=iNmPi[(R MF+[QMF]R PiM)T(R MF+[QMF]R PiM)E(R MF+[QMF]R PiM)(R MF+[QMF]R PiM)T]= mtotal[(R MF)TR MFER MF(R MF)T][I1]ΣMF+ [QMF](iNmPi[(R PiM)TR PiMER PiM(R PiM)T])[QMF]T+[I2]ΣMF mtotal[(R MF)T([QMF]R CoMM)ER MF([QMF]R CoMM)T][I3]ΣMF+ mtotal[([QMF]R CoMM)TR MFE([QMF]R CoMM)(R MF)T][I4]ΣMF=[I1]ΣMF+[I2]ΣMF+[I3]ΣMF+[I4]ΣMF

其中, [ I 2 ] Σ M F = [ Q M F ] ( ∑ i N m P i ⋅ [ ( R ⃗ P i M ) T R ⃗ P i M ⋅ E − R ⃗ P i M ( R ⃗ P i M ) T ] ) [ Q M F ] T = [ Q M F ] [ I ] Σ M M [ Q M F ] T \left[ I_2 \right] _{\Sigma _{\mathrm{M}}}^{F}=\left[ Q_{\mathrm{M}}^{F} \right] \left( \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}}\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\cdot E-\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}} \right]} \right) \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}=\left[ Q_{\mathrm{M}}^{F} \right] \left[ I \right] _{\Sigma _{\mathrm{M}}}^{M}\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}} [I2]ΣMF=[QMF](iNmPi[(R PiM)TR PiMER PiM(R PiM)T])[QMF]T=[QMF][I]ΣMM[QMF]T,对上式进行讨论:

  • 纯回转: R ⃗ M F = 0 \vec{R}_{\mathrm{M}}^{F}=0 R MF=0时,化简为:
    [ I ] Σ M F ∣ R ⃗ M F = 0 = [ I 2 ] Σ M F = [ Q M F ] ( ∑ i N m P i ⋅ [ ( R ⃗ P i M ) T R ⃗ P i M ⋅ E − R ⃗ P i M ( R ⃗ P i M ) T ] ) [ Q M F ] T = [ Q M F ] [ I ] Σ M M [ Q M F ] T \left. \left[ I \right] _{\Sigma _{\mathrm{M}}}^{F} \right|_{\vec{\mathrm{R}}_{\mathrm{M}}^{F}=0}=\left[ I_2 \right] _{\Sigma _{\mathrm{M}}}^{F}=\left[ Q_{\mathrm{M}}^{F} \right] \left( \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}}\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\cdot E-\vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M}\left( \vec{R}_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^{\mathrm{T}} \right]} \right) \left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}}=\left[ Q_{\mathrm{M}}^{F} \right] \left[ I \right] _{\Sigma _{\mathrm{M}}}^{M}\left[ Q_{\mathrm{M}}^{F} \right] ^{\mathrm{T}} [I]ΣMF R MF=0=[I2]ΣMF=[QMF](iNmPi[(R PiM)TR PiMER PiM(R PiM)T])[QMF]T=[QMF][I]ΣMM[QMF]T
  • 纯移动: R ⃗ M F ≠ 0 \vec{R}_{\mathrm{M}}^{F}\ne 0 R MF=0 [ Q M F ] = E \left[ Q_{\mathrm{M}}^{F} \right] =E [QMF]=E时,化简为:
    [ I ] Σ M F ∣ R ⃗ M F ≠ 0 , [ Q M F ] = E = [ I 1 ] Σ M F + [ I ] Σ M M \left. \left[ I \right] _{\Sigma _{\mathrm{M}}}^{F} \right|_{\vec{\mathrm{R}}_{\mathrm{M}}^{F}\ne 0,\left[ Q_{\mathrm{M}}^{F} \right] =\mathrm{E}}=\left[ I_1 \right] _{\Sigma _{\mathrm{M}}}^{F}+\left[ I \right] _{\Sigma _{\mathrm{M}}}^{M} [I]ΣMF R MF=0,[QMF]=E=[I1]ΣMF+[I]ΣMM
    上式也称为惯性矩阵的平行轴定理Parallel Axis Theorem
  • 运动坐标系原点与质心点重合: R ⃗ C o M F = 0 \vec{R}_{\mathrm{CoM}}^{F}=0 R CoMF=0时,化简为:
    [ I ] F ∣ R ⃗ C o M F = 0 = [ I 1 ] + [ I 2 ] \left. \left[ I \right] ^F \right|_{\vec{R}_{\mathrm{CoM}}^{F}=0}=\left[ I_1 \right] +\left[ I_2 \right] [I]F R CoMF=0=[I1]+[I2]

2.4 惯性矩阵的主轴定理} Principal Axis Theorem

进一步观察惯性矩阵:
[ I ] M = [ ∑ i N m P i ⋅ [ ( y P i M ) 2 + ( z P i M ) 2 ] − ∑ i N m P i ⋅ x P i M y P i M − ∑ i N m P i ⋅ ( x P i M z P i M ) − ∑ i N m P i ⋅ ( y P i M x P i M ) ∑ i N m P i ⋅ [ ( x P i M ) 2 + ( z P i M ) 2 ] − ∑ i N m P i ⋅ ( y P i M z P i M ) − ∑ i N m P i ⋅ ( z P i M x P i M ) − ∑ i N m P i ⋅ ( z P i M y P i M ) ∑ i N m P i ⋅ [ ( x P i M ) 2 + ( y P i M ) 2 ] ] \left[ I \right] ^M=\left[ \begin{matrix} \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( y_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^2+\left( z_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot x_{\mathrm{P}_{\mathrm{i}}}^{M}y_{\mathrm{P}_{\mathrm{i}}}^{M}}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( x_{\mathrm{P}_{\mathrm{i}}}^{M}z_{\mathrm{P}_{\mathrm{i}}}^{M} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{P}_{\mathrm{i}}}^{M}x_{\mathrm{P}_{\mathrm{i}}}^{M} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^2+\left( z_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^2 \right]}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( y_{\mathrm{P}_{\mathrm{i}}}^{M}z_{\mathrm{P}_{\mathrm{i}}}^{M} \right)}\\ -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{P}_{\mathrm{i}}}^{M}x_{\mathrm{P}_{\mathrm{i}}}^{M} \right)}& -\sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left( z_{\mathrm{P}_{\mathrm{i}}}^{M}y_{\mathrm{P}_{\mathrm{i}}}^{M} \right)}& \sum_i^N{m_{\mathrm{P}_{\mathrm{i}}}\cdot \left[ \left( x_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^2+\left( y_{\mathrm{P}_{\mathrm{i}}}^{M} \right) ^2 \right]}\\ \end{matrix} \right] [I]M= iNmPi[(yPiM)2+(zPiM)2]iNmPi(yPiMxPiM)iNmPi(zPiMxPiM)iNmPixPiMyPiMiNmPi[(xPiM)2+(zPiM)2]iNmPi(zPiMyPiM)iNmPi(xPiMzPiM)iNmPi(yPiMzPiM)iNmPi[(xPiM)2+(yPiM)2] ,为对称矩阵Symmetric Matrix(此时默认 M M M 点与 F F F 点重合),则一定能够对角化。

等价于找到另一原点与 M M M 重合的坐标系 B B B ,使得: [ I ] B = [ I x x B 0 0 0 I y y B 0 0 0 I z z B ] \left[ I \right] ^B=\left[ \begin{matrix} I_{\mathrm{xx}}^{B}& 0& 0\\ 0& I_{\mathrm{yy}}^{B}& 0\\ 0& 0& I_{\mathrm{zz}}^{B}\\ \end{matrix} \right] [I]B= IxxB000IyyB000IzzB ,根据矩阵对角化Matrix Diagonalizing的原理,结合纯回转推导可得:
[ I ] M = [ Q B M ] [ I ] B [ Q B M ] T \left[ I \right] ^M=\left[ Q_{\mathrm{B}}^{M} \right] \left[ I \right] ^B\left[ Q_{\mathrm{B}}^{M} \right] ^{\mathrm{T}} [I]M=[QBM][I]B[QBM]T

其中:

  • [ Q B M ] \left[ Q_{\mathrm{B}}^{M} \right] [QBM] 满足 [ i ⃗ B j ⃗ B k ⃗ B ] = [ Q B M ] T [ i ⃗ M j ⃗ M k ⃗ M ] \left[ \begin{array}{c} \vec{i}^B\\ \vec{j}^B\\ \vec{k}^B\\ \end{array} \right] =\left[ Q_{\mathrm{B}}^{M} \right] ^{\mathrm{T}}\left[ \begin{array}{c} \vec{i}^M\\ \vec{j}^M\\ \vec{k}^M\\ \end{array} \right] i Bj Bk B =[QBM]T i Mj Mk M
  • ( I x x B , I y y B , I z z B ) \left( I_{\mathrm{xx}}^{B},I_{\mathrm{yy}}^{B},I_{\mathrm{zz}}^{B} \right) (IxxB,IyyB,IzzB) 为矩阵 [ I ] M \left[ I \right] ^M [I]M特征值Eigenvalue
  • [ Q B M ] \left[ Q_{\mathrm{B}}^{M} \right] [QBM] 为对应于特征值矩阵 [ I ] B \left[ I \right] ^B [I]B特征基Standard Eigenvalue Basis(列向量);

在这里插入图片描述

1
2
3
4
5
6
7
8
9
1
2
3
4
5
6
7
8
9

这篇关于[足式机器人]Part3 机构运动学与动力学分析与建模 Ch00-2(4) 质量刚体的在坐标系下运动的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/590263

相关文章

性能分析之MySQL索引实战案例

文章目录 一、前言二、准备三、MySQL索引优化四、MySQL 索引知识回顾五、总结 一、前言 在上一讲性能工具之 JProfiler 简单登录案例分析实战中已经发现SQL没有建立索引问题,本文将一起从代码层去分析为什么没有建立索引? 开源ERP项目地址:https://gitee.com/jishenghua/JSH_ERP 二、准备 打开IDEA找到登录请求资源路径位置

SWAP作物生长模型安装教程、数据制备、敏感性分析、气候变化影响、R模型敏感性分析与贝叶斯优化、Fortran源代码分析、气候数据降尺度与变化影响分析

查看原文>>>全流程SWAP农业模型数据制备、敏感性分析及气候变化影响实践技术应用 SWAP模型是由荷兰瓦赫宁根大学开发的先进农作物模型,它综合考虑了土壤-水分-大气以及植被间的相互作用;是一种描述作物生长过程的一种机理性作物生长模型。它不但运用Richard方程,使其能够精确的模拟土壤中水分的运动,而且耦合了WOFOST作物模型使作物的生长描述更为科学。 本文让更多的科研人员和农业工作者

MOLE 2.5 分析分子通道和孔隙

软件介绍 生物大分子通道和孔隙在生物学中发挥着重要作用,例如在分子识别和酶底物特异性方面。 我们介绍了一种名为 MOLE 2.5 的高级软件工具,该工具旨在分析分子通道和孔隙。 与其他可用软件工具的基准测试表明,MOLE 2.5 相比更快、更强大、功能更丰富。作为一项新功能,MOLE 2.5 可以估算已识别通道的物理化学性质。 软件下载 https://pan.quark.cn/s/57

基于UE5和ROS2的激光雷达+深度RGBD相机小车的仿真指南(五):Blender锥桶建模

前言 本系列教程旨在使用UE5配置一个具备激光雷达+深度摄像机的仿真小车,并使用通过跨平台的方式进行ROS2和UE5仿真的通讯,达到小车自主导航的目的。本教程默认有ROS2导航及其gazebo仿真相关方面基础,Nav2相关的学习教程可以参考本人的其他博客Nav2代价地图实现和原理–Nav2源码解读之CostMap2D(上)-CSDN博客往期教程: 第一期:基于UE5和ROS2的激光雷达+深度RG

衡石分析平台使用手册-单机安装及启动

单机安装及启动​ 本文讲述如何在单机环境下进行 HENGSHI SENSE 安装的操作过程。 在安装前请确认网络环境,如果是隔离环境,无法连接互联网时,请先按照 离线环境安装依赖的指导进行依赖包的安装,然后按照本文的指导继续操作。如果网络环境可以连接互联网,请直接按照本文的指导进行安装。 准备工作​ 请参考安装环境文档准备安装环境。 配置用户与安装目录。 在操作前请检查您是否有 sud

线性因子模型 - 独立分量分析(ICA)篇

序言 线性因子模型是数据分析与机器学习中的一类重要模型,它们通过引入潜变量( latent variables \text{latent variables} latent variables)来更好地表征数据。其中,独立分量分析( ICA \text{ICA} ICA)作为线性因子模型的一种,以其独特的视角和广泛的应用领域而备受关注。 ICA \text{ICA} ICA旨在将观察到的复杂信号

数学建模笔记—— 非线性规划

数学建模笔记—— 非线性规划 非线性规划1. 模型原理1.1 非线性规划的标准型1.2 非线性规划求解的Matlab函数 2. 典型例题3. matlab代码求解3.1 例1 一个简单示例3.2 例2 选址问题1. 第一问 线性规划2. 第二问 非线性规划 非线性规划 非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。2

【软考】希尔排序算法分析

目录 1. c代码2. 运行截图3. 运行解析 1. c代码 #include <stdio.h>#include <stdlib.h> void shellSort(int data[], int n){// 划分的数组,例如8个数则为[4, 2, 1]int *delta;int k;// i控制delta的轮次int i;// 临时变量,换值int temp;in

三相直流无刷电机(BLDC)控制算法实现:BLDC有感启动算法思路分析

一枚从事路径规划算法、运动控制算法、BLDC/FOC电机控制算法、工控、物联网工程师,爱吃土豆。如有需要技术交流或者需要方案帮助、需求:以下为联系方式—V 方案1:通过霍尔传感器IO中断触发换相 1.1 整体执行思路 霍尔传感器U、V、W三相通过IO+EXIT中断的方式进行霍尔传感器数据的读取。将IO口配置为上升沿+下降沿中断触发的方式。当霍尔传感器信号发生发生信号的变化就会触发中断在中断

kubelet组件的启动流程源码分析

概述 摘要: 本文将总结kubelet的作用以及原理,在有一定基础认识的前提下,通过阅读kubelet源码,对kubelet组件的启动流程进行分析。 正文 kubelet的作用 这里对kubelet的作用做一个简单总结。 节点管理 节点的注册 节点状态更新 容器管理(pod生命周期管理) 监听apiserver的容器事件 容器的创建、删除(CRI) 容器的网络的创建与删除