本文主要是介绍Camshift原理 camshift利用目标的颜色直方图模型将图像转换为颜色概率分布图,初始化一个搜索窗的大小和位置,并根据上一帧得到的结果自适应调整搜索窗口的位置和大小,从而定位出当前图像中目标的,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!
Camshift原理
camshift利用目标的颜色直方图模型将图像转换为颜色概率分布图,初始化一个搜索窗的大小和位置,并根据上一帧得到的结果自适应调整搜索窗口的位置和大小,从而定位出当前图像中目标的中心位置。
分为三个部分:
1--色彩投影图(反向投影):
(1).RGB颜色空间对光照亮度变化较为敏感,为了减少此变化对跟踪效果的影响,首先将图像从RGB空间转换到HSV空间。(2).然后对其中的H分量作直方图,在直方图中代表了不同H分量值出现的概率或者像素个数,就是说可以查找出H分量大小为h的概率或者像素个数,即得到了颜色概率查找表。(3).将图像中每个像素的值用其颜色出现的概率对替换,就得到了颜色概率分布图。这个过程就叫反向投影,颜色概率分布图是一个灰度图像。
2--meanshift
meanshift算法是一种密度函数梯度估计的非参数方法,通过迭代寻优找到概率分布的极值来定位目标。
算法过程为:
(1).在颜色概率分布图中选取搜索窗W
(2).计算零阶距:

计算一阶距:

计算搜索窗的质心:

(3).调整搜索窗大小
宽度为
;长度为1.2s;
(4).移动搜索窗的中心到质心,如果移动距离大于预设的固定阈值,则重复2)3)4),直到搜索窗的中心与质心间的移动距离小于预设的固定阈值,或者循环运算的次数达到某一最大值,停止计算。关于meanshift的收敛性证明可以google相关文献。
3--camshift
将meanshift算法扩展到连续图像序列,就是camshift算法。它将视频的所有帧做meanshift运算,并将上一帧的结果,即搜索窗的大小和中心,作为下一帧meanshift算法搜索窗的初始值。如此迭代下去,就可以实现对目标的跟踪。
算法过程为:
(1).初始化搜索窗
(2).计算搜索窗的颜色概率分布(反向投影)
(3).运行meanshift算法,获得搜索窗新的大小和位置。
(4).在下一帧视频图像中用(3)中的值重新初始化搜索窗的大小和位置,再跳转到(2)继续进行。
camshift能有效解决目标变形和遮挡的问题,对系统资源要求不高,时间复杂度低,在简单背景下能够取得良好的跟踪效果。但当背景较为复杂,或者有许多与目标颜色相似像素干扰的情况下,会导致跟踪失败。因为它单纯的考虑颜色直方图,忽略了目标的空间分布特性,所以这种情况下需加入对跟踪目标的预测算法。
OpenCV实现camshift算法的例子:
-
-
-
-
-
- #ifdef _CH_
- #pragma package <opencv>
- #endif
-
- #ifndef _EiC
- #include "cv.h"
- #include "highgui.h"
- #include <stdio.h>
- #include <ctype.h>
- #endif
-
- IplImage *image = 0, *hsv = 0, *hue = 0, *mask = 0, *backproject = 0, *histimg = 0;
-
- CvHistogram *hist = 0;
-
- int backproject_mode = 0;
- int select_object = 0;
- int track_object = 0;
- int show_hist = 1;
- CvPoint origin;
- CvRect selection;
- CvRect track_window;
- CvBox2D track_box;
-
-
-
-
-
-
- CvConnectedComp track_comp;
-
-
-
-
-
-
- int hdims = 16;
-
- float hranges_arr[] = {0,180};
-
- float* hranges = hranges_arr;
-
- int vmin = 10, vmax = 256, smin = 30;
-
-
- void on_mouse( int event, int x, int y, int flags, void* param )
-
- {
- if( !image )
- return;
-
- if( image->origin )
- y = image->height - y;
-
-
- if( select_object )
-
-
- {
- selection.x = MIN(x,origin.x);
- selection.y = MIN(y,origin.y);
- selection.width = selection.x + CV_IABS(x - origin.x);
- selection.height = selection.y + CV_IABS(y - origin.y);
-
- selection.x = MAX( selection.x, 0 );
- selection.y = MAX( selection.y, 0 );
- selection.width = MIN( selection.width, image->width );
- selection.height = MIN( selection.height, image->height );
- selection.width -= selection.x;
- selection.height -= selection.y;
- }
-
- switch( event )
- {
- case CV_EVENT_LBUTTONDOWN:
-
- origin = cvPoint(x,y);
- selection = cvRect(x,y,0,0);
- select_object = 1;
- break;
- case CV_EVENT_LBUTTONUP:
-
- select_object = 0;
- if( selection.width > 0 && selection.height > 0 )
-
- track_object = -1;
- break;
- }
- }
-
-
- CvScalar hsv2rgb( float hue )
-
- {
- int rgb[3], p, sector;
- static const int sector_data[][3]=
- {{0,2,1}, {1,2,0}, {1,0,2}, {2,0,1}, {2,1,0}, {0,1,2}};
- hue *= 0.033333333333333333333333333333333f;
- sector = cvFloor(hue);
- p = cvRound(255*(hue - sector));
- p ^= sector & 1 ? 255 : 0;
-
- rgb[sector_data[sector][0]] = 255;
- rgb[sector_data[sector][1]] = 0;
- rgb[sector_data[sector][2]] = p;
-
- return cvScalar(rgb[2], rgb[1], rgb[0],0);
- }
-
- int main( int argc, char** argv )
- {
- CvCapture* capture = 0;
-
- if( argc == 1 || (argc == 2 && strlen(argv[1]) == 1 && isdigit(argv[1][0])))
-
- capture = cvCaptureFromCAM( argc == 2 ? argv[1][0] - '0' : 0 );
- else if( argc == 2 )
-
- capture = cvCaptureFromAVI( argv[1] );
-
- if( !capture )
-
- {
- fprintf(stderr,"Could not initialize capturing...\n");
- return -1;
- }
-
- printf( "Hot keys: \n"
- "\tESC - quit the program\n"
- "\tc - stop the tracking\n"
- "\tb - switch to/from backprojection view\n"
- "\th - show/hide object histogram\n"
- "To initialize tracking, select the object with mouse\n" );
-
-
- cvNamedWindow( "Histogram", 1 );
-
- cvNamedWindow( "CamShiftDemo", 1 );
-
- cvSetMouseCallback( "CamShiftDemo", on_mouse, 0 );
-
- cvCreateTrackbar( "Vmin", "CamShiftDemo", &vmin, 256, 0 );
- cvCreateTrackbar( "Vmax", "CamShiftDemo", &vmax, 256, 0 );
- cvCreateTrackbar( "Smin", "CamShiftDemo", &smin, 256, 0 );
-
-
- for(;;)
-
- {
- IplImage* frame = 0;
- int i, bin_w, c;
-
- frame = cvQueryFrame( capture );
- if( !frame )
- break;
-
- if( !image )
-
- {
- image = cvCreateImage( cvGetSize(frame), 8, 3 );
- image->origin = frame->origin;
- hsv = cvCreateImage( cvGetSize(frame), 8, 3 );
- hue = cvCreateImage( cvGetSize(frame), 8, 1 );
- mask = cvCreateImage( cvGetSize(frame), 8, 1 );
-
- backproject = cvCreateImage( cvGetSize(frame), 8, 1 );
-
- hist = cvCreateHist( 1, &hdims, CV_HIST_ARRAY, &hranges, 1 );
-
- histimg = cvCreateImage( cvSize(320,200), 8, 3 );
-
- cvZero( histimg );
-
- }
-
- cvCopy( frame, image, 0 );
- cvCvtColor( image, hsv, CV_BGR2HSV );
-
-
- if( track_object )
-
- {
- int _vmin = vmin, _vmax = vmax;
-
- cvInRangeS( hsv, cvScalar(0,smin,MIN(_vmin,_vmax),0),
- cvScalar(180,256,MAX(_vmin,_vmax),0), mask );
-
- cvSplit( hsv, hue, 0, 0, 0 );
-
-
- if( track_object < 0 )
-
- {
- float max_val = 0.f;
- cvSetImageROI( hue, selection );
-
- cvSetImageROI( mask, selection );
-
- cvCalcHist( &hue, hist, 0, mask );
-
- cvGetMinMaxHistValue( hist, 0, &max_val, 0, 0 );
- cvConvertScale( hist->bins, hist->bins, max_val ? 255. / max_val : 0., 0 );
-
- cvResetImageROI( hue );
-
- cvResetImageROI( mask );
-
- track_window = selection;
- track_object = 1;
-
- cvZero( histimg );
- bin_w = histimg->width / hdims;
- for( i = 0; i < hdims; i++ )
-
- {
- int val = cvRound( cvGetReal1D(hist->bins,i)*histimg->height/255 );
- CvScalar color = hsv2rgb(i*180.f/hdims);
- cvRectangle( histimg, cvPoint(i*bin_w,histimg->height),
- cvPoint((i+1)*bin_w,histimg->height - val),
- color, -1, 8, 0 );
- }
- }
-
- cvCalcBackProject( &hue, backproject, hist );
-
- cvAnd( backproject, mask, backproject, 0 );
-
- cvCamShift( backproject, track_window,
- cvTermCriteria( CV_TERMCRIT_EPS | CV_TERMCRIT_ITER, 10, 1 ),
- &track_comp, &track_box );
-
- track_window = track_comp.rect;
-
-
- if( backproject_mode )
- cvCvtColor( backproject, image, CV_GRAY2BGR );
-
- if( image->origin )
- track_box.angle = -track_box.angle;
- cvEllipseBox( image, track_box, CV_RGB(255,0,0), 3, CV_AA, 0 );
-
- }
-
- if( select_object && selection.width > 0 && selection.height > 0 )
-
- {
- cvSetImageROI( image, selection );
- cvXorS( image, cvScalarAll(255), image, 0 );
- cvResetImageROI( image );
- }
-
- cvShowImage( "CamShiftDemo", image );
- cvShowImage( "Histogram", histimg );
-
- c = cvWaitKey(10);
- if( (char) c == 27 )
- break;
- switch( (char) c )
-
- {
- case 'b':
- backproject_mode ^= 1;
- break;
- case 'c':
- track_object = 0;
- cvZero( histimg );
- break;
- case 'h':
- show_hist ^= 1;
- if( !show_hist )
- cvDestroyWindow( "Histogram" );
- else
- cvNamedWindow( "Histogram", 1 );
- break;
- default:
- ;
- }
- }
-
- cvReleaseCapture( &capture );
- cvDestroyWindow("CamShiftDemo");
-
- return 0;
- }
-
- #ifdef _EiC
- main(1,"camshiftdemo.c");
- #endif
这篇关于Camshift原理 camshift利用目标的颜色直方图模型将图像转换为颜色概率分布图,初始化一个搜索窗的大小和位置,并根据上一帧得到的结果自适应调整搜索窗口的位置和大小,从而定位出当前图像中目标的的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!